Source code for pylops.basicoperators.pad
__all__ = ["Pad"]
from typing import Sequence, Tuple, Union
import numpy as np
from pylops import LinearOperator
from pylops.utils._internal import _value_or_sized_to_tuple
from pylops.utils.backend import get_array_module
from pylops.utils.decorators import reshaped
from pylops.utils.typing import DTypeLike, InputDimsLike, NDArray
[docs]class Pad(LinearOperator):
r"""Pad operator.
Zero-pad model in forward model and extract non-zero subsequence
in adjoint. Padding can be performed in one or multiple directions to any
multi-dimensional input arrays.
Parameters
----------
dims : :obj:`int` or :obj:`tuple`
Number of samples for each dimension
pad : :obj:`tuple`
Number of samples to pad. If ``dims`` is a scalar, ``pad`` is a single
tuple ``(pad_in, pad_end)``. If ``dims`` is a tuple,
``pad`` is a tuple of tuples where each inner tuple contains
the number of samples to pad in each dimension
dtype : :obj:`str`, optional
Type of elements in input array.
name : :obj:`str`, optional
.. versionadded:: 2.0.0
Name of operator (to be used by :func:`pylops.utils.describe.describe`)
Attributes
----------
shape : :obj:`tuple`
Operator shape
explicit : :obj:`bool`
Operator contains a matrix that can be solved explicitly (``True``) or
not (``False``)
Raises
------
ValueError
If any element of ``pad`` is negative.
Notes
-----
Given an array of size :math:`N`, the *Pad* operator simply adds
:math:`\text{pad}_\text{in}` at the start and :math:`\text{pad}_\text{end}` at the end in forward mode:
.. math::
y_{i} = x_{i-\text{pad}_\text{in}} \quad \forall
i=\text{pad}_\text{in},\ldots,\text{pad}_\text{in}+N-1
and :math:`y_i = 0 \quad \forall
i=0,\ldots,\text{pad}_\text{in}-1, \text{pad}_\text{in}+N-1,\ldots,N+\text{pad}_\text{in}+\text{pad}_\text{end}`
In adjoint mode, values from :math:`\text{pad}_\text{in}` to :math:`N-\text{pad}_\text{end}` are
extracted from the data:
.. math::
x_{i} = y_{\text{pad}_\text{in}+i} \quad \forall i=0, N-1
"""
def __init__(
self,
dims: Union[int, InputDimsLike],
pad: Union[Tuple[int, int], Sequence[Tuple[int, int]]],
dtype: DTypeLike = "float64",
name: str = "P",
) -> None:
if np.any(np.array(pad) < 0):
raise ValueError("Padding must be positive or zero")
dims = _value_or_sized_to_tuple(dims)
# Accept (padbeg, padend) and [(padbeg, padend)]
self.pad: Sequence = [pad] if len(dims) == 1 and len(pad) == 2 else pad
dimsd = [dim + before + after for dim, (before, after) in zip(dims, self.pad)]
super().__init__(dtype=np.dtype(dtype), dims=dims, dimsd=dimsd, name=name)
@reshaped
def _matvec(self, x: NDArray) -> NDArray:
ncp = get_array_module(x)
return ncp.pad(x, self.pad, mode="constant")
@reshaped
def _rmatvec(self, x: NDArray) -> NDArray:
ncp = get_array_module(x)
for ax, (before, _) in enumerate(self.pad):
x = ncp.take(x, ncp.arange(before, before + self.dims[ax]), axis=ax)
return x