Source code for pylops.signalprocessing.Convolve2D

import numpy as np
from scipy.signal import convolve2d, correlate2d
from pylops import LinearOperator


[docs]class Convolve2D(LinearOperator): r"""2D convolution operator. Apply two-dimensional convolution with a compact filter to model (and data) along a pair of specific directions of a two or three-dimensional array depending on the choice of ``nodir``. Parameters ---------- N : :obj:`int` Number of samples in model h : :obj:`numpy.ndarray` 2d compact filter to be convolved to input signal dims : :obj:`list` Number of samples for each dimension offset : :obj:`tuple`, optional Indeces of the center of the compact filter nodir : :obj:`int`, optional Direction along which convolution is NOT applied (set to None for 2d arrays) dtype : :obj:`str`, optional Type of elements in input array. Attributes ---------- shape : :obj:`tuple` Operator shape explicit : :obj:`bool` Operator contains a matrix that can be solved explicitly (``True``) or not (``False``) Notes ----- The Convolve2D operator applies two-dimensional convolution between the input signal :math:`d(t,x)` and a compact filter kernel :math:`h(t,x)` in forward model: .. math:: y(t,x) = \int_{-\inf}^{\inf}\int_{-\inf}^{\inf} h(t-\tau,x-\chi) d(\tau,\chi) d\tau d\chi This operation can be discretized as follows .. math:: y[i,n] = \sum_{j=-\inf}^{\inf} \sum_{m=-\inf}^{\inf} h[i-j,n-m] d[j,m] as well as performed in the frequency domain. .. math:: Y(f, k_x) = \mathscr{F} (h(t,x)) * \mathscr{F} (d(t,x)) Convolve2D operator uses :py:func:`scipy.signal.convolve2d` that automatically chooses the best domain for the operation to be carried out. As the adjoint of convolution is correlation, Convolve2D operator applies correlation in the adjoint mode. In time domain: .. math:: y(t,x) = \int_{-\inf}^{\inf}\int_{-\inf}^{\inf} h(t+\tau,x+\chi) d(\tau,\chi) d\tau d\chi or in frequency domain: .. math:: y(t, x) = \mathscr{F}^{-1} (H(f, k_x)^* * X(f, k_x)) """ def __init__(self, N, h, dims, offset=(0, 0), nodir=None, dtype='float64'): self.offset = np.array(offset, dtype=np.int) self.h = np.array(h) self.nodir = nodir if np.prod(dims) != N: raise ValueError('product of dims must equal N!') else: self.dims = np.array(dims) self.reshape = True if self.nodir is None: self.shape = (np.prod(self.dims), np.prod(self.dims)) else: self.shape = (np.prod(self.dims), np.prod(self.dims)) self.dtype = np.dtype(dtype) self.explicit = False def _matvec(self, x): x = np.reshape(x, self.dims) if self.nodir is None: y = convolve2d(x, self.h, mode='full') y = y[self.offset[0]:-self.h.shape[0]+self.offset[0]+1, self.offset[1]:-self.h.shape[1]+self.offset[1]+1] else: x = np.swapaxes(x, self.nodir, 0) y = np.array([convolve2d(x[i], self.h, mode='full') for i in range(self.dims[self.nodir])]) y = y[:, self.offset[0]:-self.h.shape[0]+self.offset[0]+1, self.offset[1]:-self.h.shape[1]+self.offset[1]+1] y = np.swapaxes(y, self.nodir, 0) y = np.ndarray.flatten(y) return y def _rmatvec(self, x): x = np.reshape(x, self.dims) if self.nodir is None: y = correlate2d(x, self.h, mode='full') y = y[self.h.shape[0]-self.offset[0]-1:-self.offset[0], self.h.shape[1]-self.offset[1]-1:-self.offset[1]] else: x = np.swapaxes(x, self.nodir, 0) y = np.array([correlate2d(x[i], self.h, mode='full') for i in range(self.dims[self.nodir])]) y = y[:, self.h.shape[0]-self.offset[0]-1:-self.offset[0], self.h.shape[1]-self.offset[1]-1:-self.offset[1]] y = np.swapaxes(y, self.nodir, 0) y = np.ndarray.flatten(y) return y