# pylops.HStack¶

class pylops.HStack(ops, dtype='float64')[source]

Horizontal stacking.

Stack a set of N linear operators horizontally.

Parameters: ops : list Linear operators to be stacked dtype : str, optional Type of elements in input array.

Notes

An horizontal stack of N linear operators is created such as its application in forward mode leads to

$\begin{split}\begin{bmatrix} \mathbf{L}_{1} & \mathbf{L}_{2} & ... & \mathbf{L}_{N} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ ... \\ \mathbf{x}_{N} \end{bmatrix} = \mathbf{L}_{1} \mathbf{x}_1 + \mathbf{L}_{2} \mathbf{x}_2 + ... + \mathbf{L}_{N} \mathbf{x}_N\end{split}$

$\begin{split}\begin{bmatrix} \mathbf{L}_{1}^H \\ \mathbf{L}_{2}^H \\ ... \\ \mathbf{L}_{N}^H \end{bmatrix} \mathbf{y} = \begin{bmatrix} \mathbf{L}_{1}^H \mathbf{y} \\ \mathbf{L}_{2}^H \mathbf{y} \\ ... \\ \mathbf{L}_{N}^H \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ ... \\ \mathbf{x}_{N} \end{bmatrix}\end{split}$
Attributes: shape : tuple Operator shape explicit : bool Operator contains a matrix that can be solved explicitly (True) or not (False)
 __init__(self, ops[, dtype]) Initialize this LinearOperator. adjoint(self) Hermitian adjoint. cond(self, \*\*kwargs_eig) Condition number of linear operator. conj(self) Complex conjugate operator div(self, y[, niter]) Solve the linear problem $$\mathbf{y}=\mathbf{A}\mathbf{x}$$. dot(self, x) Matrix-matrix or matrix-vector multiplication. eigs(self[, neigs, symmetric, niter]) Most significant eigenvalues of linear operator. matmat(self, X) Matrix-matrix multiplication. matvec(self, x) Matrix-vector multiplication. rmatvec(self, x) Adjoint matrix-vector multiplication. transpose(self) Transpose this linear operator.