pylops.Flip

class pylops.Flip(N, dims=None, dir=0, dtype='float64')[source]

Flip along an axis.

Flip a multi-dimensional array along a specified direction dir.

Parameters:
N : int

Number of samples in model.

dims : list, optional

Number of samples for each dimension (None if only one dimension is available)

dir : int, optional

Direction along which flipping is applied.

dtype : str, optional

Type of elements in input array.

Notes

The Flip operator flips the input model (and data) along any chosen direction. For simplicity, given a one dimensional array, in forward mode this is equivalent to:

\[y[i] = x[N-i] \quad \forall i=0,1,2,...,N-1\]

where \(N\) is the lenght of the input model. As this operator is self-adjoint, \(x\) and \(y\) in the equation above are simply swapped in adjoint mode.

Attributes:
shape : tuple

Operator shape

explicit : bool

Operator contains a matrix that can be solved explicitly (True) or not (False)

Methods

__init__(self, N[, dims, dir, dtype]) Initialize this LinearOperator.
adjoint(self) Hermitian adjoint.
apply_columns(self, cols) Apply subset of columns of operator
cond(self, \*\*kwargs_eig) Condition number of linear operator.
conj(self) Complex conjugate operator
div(self, y[, niter]) Solve the linear problem \(\mathbf{y}=\mathbf{A}\mathbf{x}\).
dot(self, x) Matrix-matrix or matrix-vector multiplication.
eigs(self[, neigs, symmetric, niter]) Most significant eigenvalues of linear operator.
matmat(self, X) Matrix-matrix multiplication.
matvec(self, x) Matrix-vector multiplication.
rmatmat(self, X) Adjoint matrix-matrix multiplication.
rmatvec(self, x) Adjoint matrix-vector multiplication.
todense(self) Return dense matrix.
transpose(self) Transpose this linear operator.

Examples using pylops.Flip