pylops.avo.avo.akirichards#
- pylops.avo.avo.akirichards(theta, vsvp, n=1)[source]#
Three terms Aki-Richards approximation.
Computes the coefficients of the of three terms Aki-Richards approximation for a set of angles and a constant or variable VS/VP ratio.
- Parameters
- Returns
- G1
np.ndarray
First coefficient of three terms Aki-Richards approximation \([n_\theta \times n_\text{vsvp}]\)
- G2
np.ndarray
Second coefficient of three terms Aki-Richards approximation \([n_\theta \times n_\text{vsvp}]\)
- G3
np.ndarray
Third coefficient of three terms Aki-Richards approximation \([n_\theta \times n_\text{vsvp}]\)
- G1
Notes
The three terms Aki-Richards approximation [1], [2], is used to compute the reflection coefficient as linear combination of contrasts in \(V_P\), \(V_S\), and \(\rho.\) More specifically:
\[R(\theta) = G_1(\theta) \frac{\Delta V_P}{\overline{V}_P} + G_2(\theta) \frac{\Delta V_S}{\overline{V}_S} + G_3(\theta) \frac{\Delta \rho}{\overline{\rho}}\]where
\[\begin{split}\begin{align} G_1(\theta) &= \frac{1}{2 \cos^2 \theta},\\ G_2(\theta) &= -4 (V_S/V_P)^2 \sin^2 \theta,\\ G_3(\theta) &= 0.5 - 2 (V_S/V_P)^2 \sin^2 \theta,\\ \frac{\Delta V_P}{\overline{V}_P} &= 2 \frac{V_{P,2}-V_{P,1}}{V_{P,2}+V_{P,1}},\\ \frac{\Delta V_S}{\overline{V}_S} &= 2 \frac{V_{S,2}-V_{S,1}}{V_{S,2}+V_{S,1}}, \\ \frac{\Delta \rho}{\overline{\rho}} &= 2 \frac{\rho_2-\rho_1}{\rho_2+\rho_1}. \end{align}\end{split}\]