# pylops.Real¶

class pylops.Real(dims, dtype='complex128')[source]

Real operator.

Return the real component of the input. The adjoint returns a complex number with the same real component as the input and zero imaginary component.

Parameters: dims : Number of samples for each dimension dtype : str, optional Type of elements in input array.

Notes

In forward mode:

$y_{i} = \Re\{x_{i}\} \quad \forall i=0,\ldots,N-1$

$x_{i} = \Re\{y_{i}\} + 0i \quad \forall i=0,\ldots,N-1$
Attributes: shape : tuple Operator shape explicit : bool Operator contains a matrix that can be solved explicitly (True) or not (False)
 __init__(dims[, dtype]) Initialize this LinearOperator. adjoint() Hermitian adjoint. apply_columns(cols) Apply subset of columns of operator cond([uselobpcg]) Condition number of linear operator. conj() Complex conjugate operator div(y[, niter, densesolver]) Solve the linear problem $$\mathbf{y}=\mathbf{A}\mathbf{x}$$. dot(x) Matrix-matrix or matrix-vector multiplication. eigs([neigs, symmetric, niter, uselobpcg]) Most significant eigenvalues of linear operator. matmat(X) Matrix-matrix multiplication. matvec(x) Matrix-vector multiplication. rmatmat(X) Matrix-matrix multiplication. rmatvec(x) Adjoint matrix-vector multiplication. todense([backend]) Return dense matrix. toimag([forw, adj]) Imag operator toreal([forw, adj]) Real operator tosparse() Return sparse matrix. trace([neval, method, backend]) Trace of linear operator. transpose() Transpose this linear operator.