class pylops.Spread(dims, dimsd, table=None, dtable=None, fh=None, interp=False, engine='numpy', dtype='float64')[source]

Spread values from the input model vector arranged as a 2-dimensional array of size $$[n_{x0} \times n_{t0}]$$ into the data vector of size $$[n_x \times n_t]$$. Spreading is performed along parametric curves provided as look-up table of pre-computed indices (table) or computed on-the-fly using a function handle (fh).

In adjont mode, values from the data vector are instead stacked along the same parametric curves.

Parameters: dims : tuple Dimensions of model vector (vector will be reshaped internally into a two-dimensional array of size $$[n_{x0} \times n_{t0}]$$, where the first dimension is the spreading/stacking direction) dimsd : tuple Dimensions of model vector (vector will be reshaped internal into a two-dimensional array of size $$[n_x \times n_t]$$) table : np.ndarray, optional Look-up table of indeces of size $$[n_{x0} \times n_{t0} \times n_x]$$ (if None use function handle fh) dtable : np.ndarray, optional Look-up table of decimals remainders for linear interpolation of size $$[n_{x0} \times n_{t0} \times n_x]$$ (if None use function handle fh) fh : np.ndarray, optional Function handle that returns an index (and a fractional value in case of interp=True) to be used for spreading/stacking given indices in $$x0$$ and $$t$$ axes (if None use look-up table table) interp : bool, optional Apply linear interpolation (True) or nearest interpolation (False) during stacking/spreading along parametric curve. To be used only if engine='numba', inferred directly from the number of outputs of fh for engine='numpy' engine : str, optional Engine used for fft computation (numpy or numba). Note that numba can only be used when providing a look-up table dtype : str, optional Type of elements in input array. KeyError If engine is neither numpy nor numba NotImplementedError If both table and fh are not provided ValueError If table has shape different from $$[n_{x0} \times n_t0 \times n_x]$$

Notes

The Spread operator applies the following linear transform in forward mode to the model vector after reshaping it into a 2-dimensional array of size $$[n_x \times n_t]$$:

$m(x0, t_0) \rightarrow d(x, t=f(x0, x, t_0))$

where $$f(x0, x, t)$$ is a mapping function that returns a value t given values $$x0$$, $$x$$, and $$t_0$$.

In adjoint mode, the model is reconstructed by means of the following stacking operation:

$m(x0, t_0) = \int{d(x, t=f(x0, x, t_0))} dx$

Note that table (or fh) must return integer numbers representing indices in the axis $$t$$. However it also possible to perform linear interpolation as part of the spreading/stacking process by providing the decimal part of the mapping function ($$t - \lfloor t \rfloor$$) either in dtable input parameter or as second value in the return of fh function.

Attributes: shape : tuple Operator shape explicit : bool Operator contains a matrix that can be solved explicitly (True) or not (False)

Methods

 __init__(self, dims, dimsd[, table, dtable, …]) Initialize this LinearOperator. adjoint(self) Hermitian adjoint. cond(self, \*\*kwargs_eig) Condition number of linear operator. conj(self) Complex conjugate operator div(self, y[, niter]) Solve the linear problem $$\mathbf{y}=\mathbf{A}\mathbf{x}$$. dot(self, x) Matrix-matrix or matrix-vector multiplication. eigs(self[, neigs, symmetric, niter]) Most significant eigenvalues of linear operator. matmat(self, X) Matrix-matrix multiplication. matvec(self, x) Matrix-vector multiplication. rmatvec(self, x) Adjoint matrix-vector multiplication. transpose(self) Transpose this linear operator.