class pylops.Gradient(dims, sampling=1, edge=False, kind='centered', dtype='float64', name='G')[source]#

Apply gradient operator to a multi-dimensional array.

Note

At least 2 dimensions are required, use pylops.FirstDerivative for 1d arrays.

Parameters
dimstuple

Number of samples for each dimension.

samplingtuple, optional

Sampling steps for each direction.

edgebool, optional

Use reduced order derivative at edges (True) or ignore them (False).

kindstr, optional

Derivative kind (forward, centered, or backward).

dtypestr, optional

Type of elements in input array.

Notes

The Gradient operator applies a first-order derivative to each dimension of a multi-dimensional array in forward mode.

For simplicity, given a three dimensional array, the Gradient in forward mode using a centered stencil can be expressed as:

$\mathbf{g}_{i, j, k} = (f_{i+1, j, k} - f_{i-1, j, k}) / d_1 \mathbf{i_1} + (f_{i, j+1, k} - f_{i, j-1, k}) / d_2 \mathbf{i_2} + (f_{i, j, k+1} - f_{i, j, k-1}) / d_3 \mathbf{i_3}$

which is discretized as follows:

$\begin{split}\mathbf{g} = \begin{bmatrix} \mathbf{df_1} \\ \mathbf{df_2} \\ \mathbf{df_3} \end{bmatrix}\end{split}$

 __init__(dims[, sampling, edge, kind, ...]) adjoint() apply_columns(cols) Apply subset of columns of operator cond([uselobpcg]) Condition number of linear operator. conj() Complex conjugate operator div(y[, niter, densesolver]) Solve the linear problem $$\mathbf{y}=\mathbf{A}\mathbf{x}$$. dot(x) Matrix-matrix or matrix-vector multiplication. eigs([neigs, symmetric, niter, uselobpcg]) Most significant eigenvalues of linear operator. matmat(X) Matrix-matrix multiplication. matvec(x) Matrix-vector multiplication. reset_count() Reset counters rmatmat(X) Matrix-matrix multiplication. rmatvec(x) Adjoint matrix-vector multiplication. todense([backend]) Return dense matrix. toimag([forw, adj]) Imag operator toreal([forw, adj]) Real operator tosparse() Return sparse matrix. trace([neval, method, backend]) Trace of linear operator. transpose()