pylops.signalprocessing.NonStationaryConvolve3D#
- class pylops.signalprocessing.NonStationaryConvolve3D(dims, hs, ihx, ihy, ihz, engine='numpy', num_threads_per_blocks=(2, 16, 16), dtype='float64', name='C')[source]#
3D non-stationary convolution operator.
Apply non-stationary three-dimensional convolution. A varying compact filter is provided on a coarser grid and on-the-fly interpolation is applied in forward and adjoint modes. Both input and output have size \(n_x \times n_y \times n_z\).
- Parameters
- dims
list
orint
Number of samples for each dimension (which we refer to as \(n_x \times n_y \times n_z\)).
- hs
numpy.ndarray
Bank of 3d compact filters of size \(n_{\text{filts},x} \times n_{\text{filts},y} \times n_{\text{filts},z} \times n_{h,x} \times n_{h,y} \times n_{h,z}\). Filters must have odd number of samples and are assumed to be centered in the middle of the filter support.
- ihx
tuple
Indices of the x locations of the filters
hs
in the model (and data). Note that the filters must be regularly sampled, i.e. \(dh_x=\text{diff}(ihx)=\text{const.}\)- ihy
tuple
Indices of the y locations of the filters
hs
in the model (and data). Note that the filters must be regularly sampled, i.e. \(dh_y=\text{diff}(ihy)=\text{const.}\)- ihz
tuple
Indices of the z locations of the filters
hs
in the model (and data). Note that the filters must be regularly sampled, i.e. \(dh_z=\text{diff}(ihz)=\text{const.}\)- engine
str
, optional Engine used for spread computation (
numpy
,numba
, orcuda
)- num_threads_per_blocks
tuple
, optional Number of threads in each block (only when
engine=cuda
)- dtype
str
, optional Type of elements in input array.
- name
str
, optional Name of operator (to be used by
pylops.utils.describe.describe
)
- dims
- Raises
- ValueError
If filters
hs
have even size- ValueError
If
ihx
,ihy
orihz
is not regularly sampled- NotImplementedError
If
engine
is neithernumpy
,fftw
, norscipy
.
Notes
See
pylops.signalprocessing.NonStationaryConvolve2D
.- Attributes
Methods
__init__
(dims, hs, ihx, ihy, ihz[, engine, ...])adjoint
()apply_columns
(cols)Apply subset of columns of operator
cond
([uselobpcg])Condition number of linear operator.
conj
()Complex conjugate operator
div
(y[, niter, densesolver])Solve the linear problem \(\mathbf{y}=\mathbf{A}\mathbf{x}\).
dot
(x)Matrix-matrix or matrix-vector multiplication.
eigs
([neigs, symmetric, niter, uselobpcg])Most significant eigenvalues of linear operator.
matmat
(X)Matrix-matrix multiplication.
matvec
(x)Matrix-vector multiplication.
reset_count
()Reset counters
rmatmat
(X)Matrix-matrix multiplication.
rmatvec
(x)Adjoint matrix-vector multiplication.
todense
([backend])Return dense matrix.
toimag
([forw, adj])Imag operator
toreal
([forw, adj])Real operator
tosparse
()Return sparse matrix.
trace
([neval, method, backend])Trace of linear operator.
transpose
()