pylops.signalprocessing.NonStationaryConvolve3D#

class pylops.signalprocessing.NonStationaryConvolve3D(dims, hs, ihx, ihy, ihz, engine='numpy', num_threads_per_blocks=(2, 16, 16), dtype='float64', name='C')[source]#

3D non-stationary convolution operator.

Apply non-stationary three-dimensional convolution. A varying compact filter is provided on a coarser grid and on-the-fly interpolation is applied in forward and adjoint modes. Both input and output have size \(n_x \times n_y \times n_z\).

Parameters
dimslist or int

Number of samples for each dimension (which we refer to as \(n_x \times n_y \times n_z\)).

hsnumpy.ndarray

Bank of 3d compact filters of size \(n_{\text{filts},x} \times n_{\text{filts},y} \times n_{\text{filts},z} \times n_{h,x} \times n_{h,y} \times n_{h,z}\). Filters must have odd number of samples and are assumed to be centered in the middle of the filter support.

ihxtuple

Indices of the x locations of the filters hs in the model (and data). Note that the filters must be regularly sampled, i.e. \(dh_x=\text{diff}(ihx)=\text{const.}\)

ihytuple

Indices of the y locations of the filters hs in the model (and data). Note that the filters must be regularly sampled, i.e. \(dh_y=\text{diff}(ihy)=\text{const.}\)

ihztuple

Indices of the z locations of the filters hs in the model (and data). Note that the filters must be regularly sampled, i.e. \(dh_z=\text{diff}(ihz)=\text{const.}\)

enginestr, optional

Engine used for spread computation (numpy, numba, or cuda)

num_threads_per_blockstuple, optional

Number of threads in each block (only when engine=cuda)

dtypestr, optional

Type of elements in input array.

namestr, optional

Name of operator (to be used by pylops.utils.describe.describe)

Raises
ValueError

If filters hs have even size

ValueError

If ihx, ihy or ihz is not regularly sampled

NotImplementedError

If engine is neither numpy, fftw, nor scipy.

Notes

See pylops.signalprocessing.NonStationaryConvolve2D.

Attributes
shapetuple

Operator shape

explicitbool

Operator contains a matrix that can be solved explicitly (True) or not (False)

Methods

__init__(dims, hs, ihx, ihy, ihz[, engine, ...])

adjoint()

apply_columns(cols)

Apply subset of columns of operator

cond([uselobpcg])

Condition number of linear operator.

conj()

Complex conjugate operator

div(y[, niter, densesolver])

Solve the linear problem \(\mathbf{y}=\mathbf{A}\mathbf{x}\).

dot(x)

Matrix-matrix or matrix-vector multiplication.

eigs([neigs, symmetric, niter, uselobpcg])

Most significant eigenvalues of linear operator.

matmat(X)

Matrix-matrix multiplication.

matvec(x)

Matrix-vector multiplication.

reset_count()

Reset counters

rmatmat(X)

Matrix-matrix multiplication.

rmatvec(x)

Adjoint matrix-vector multiplication.

todense([backend])

Return dense matrix.

toimag([forw, adj])

Imag operator

toreal([forw, adj])

Real operator

tosparse()

Return sparse matrix.

trace([neval, method, backend])

Trace of linear operator.

transpose()