pylops.waveeqprocessing.SeismicInterpolation#
- pylops.waveeqprocessing.SeismicInterpolation(data, nrec, iava, iava1=None, kind='fk', nffts=None, sampling=None, spataxis=None, spat1axis=None, taxis=None, paxis=None, p1axis=None, centeredh=True, nwins=None, nwin=None, nover=None, engine='numba', dottest=False, **kwargs_solver)[source]#
Seismic interpolation (or regularization).
Interpolate seismic data from irregular to regular spatial grid. Depending on the size of the input
data
, interpolation is either 2- or 3-dimensional. In case of 3-dimensional interpolation, data can be irregularly sampled in either one or both spatial directions.- Parameters
- data
np.ndarray
Irregularly sampled seismic data of size \([n_{r_y} \,(\times n_{r_x} \times n_t)]\)
- nrec
int
ortuple
Number of elements in the regularly sampled (reconstructed) spatial array, \(n_{R_y}\) for 2-dimensional data and \((n_{R_y}, n_{R_x})\) for 3-dimensional data
- iava
list
ornumpy.ndarray
Integer (or floating) indices of locations of available samples in first dimension of regularly sampled spatial grid of interpolated signal. The
pylops.basicoperators.Restriction
operator is used in case of integer indices, while thepylops.signalprocessing.Iterp
operator is used in case of floating indices.- iava1
list
ornumpy.ndarray
, optional Integer (or floating) indices of locations of available samples in second dimension of regularly sampled spatial grid of interpolated signal. Can be used only in case of 3-dimensional data.
- kind
str
, optional Type of inversion:
fk
(default),spatial
,radon-linear
,chirpradon-linear
,radon-parabolic
,radon-hyperbolic
,sliding
, orchirp-sliding
- nffts
int
ortuple
, optional nffts :
tuple
, optional Number of samples in Fourier Transform for each direction. Required ifkind='fk'
- sampling
tuple
, optional Sampling steps
dy
(,dx
) anddt
. Required ifkind='fk'
orkind='radon-linear'
- spataxis
np.ndarray
, optional First spatial axis. Required for
kind='radon-linear'
,kind='chirpradon-linear'
,kind='radon-parabolic'
,kind='radon-hyperbolic'
, can also be provided instead ofsampling
forkind='fk'
- spat1axis
np.ndarray
, optional Second spatial axis. Required for
kind='radon-linear'
,kind='chirpradon-linear'
,kind='radon-parabolic'
,kind='radon-hyperbolic'
, can also be provided instead ofsampling
forkind='fk'
- taxis
np.ndarray
, optional Time axis. Required for
kind='radon-linear'
,kind='chirpradon-linear'
,kind='radon-parabolic'
,kind='radon-hyperbolic'
, can also be provided instead ofsampling
forkind='fk'
- paxis
np.ndarray
, optional First Radon axis. Required for
kind='radon-linear'
,kind='chirpradon-linear'
,kind='radon-parabolic'
,kind='radon-hyperbolic'
,kind='sliding'
, andkind='chirp-sliding'
- p1axis
np.ndarray
, optional Second Radon axis. Required for
kind='radon-linear'
,kind='chirpradon-linear'
,kind='radon-parabolic'
,kind='radon-hyperbolic'
,kind='sliding'
, andkind='chirp-sliding'
- centeredh
bool
, optional Assume centered spatial axis (
True
) or not (False
). Required forkind='radon-linear'
,kind='radon-parabolic'
andkind='radon-hyperbolic'
- nwins
int
ortuple
, optional Number of windows. Required for
kind='sliding'
andkind='chirp-sliding'
- nwin
int
ortuple
, optional Number of samples of window. Required for
kind='sliding'
andkind='chirp-sliding'
- nover
int
ortuple
, optional Number of samples of overlapping part of window. Required for
kind='sliding'
andkind='chirp-sliding'
- engine
str
, optional Engine used for Radon computations (
numpy/numba
forRadon2D
andRadon3D
ornumpy/fftw
forChirpRadon2D
andChirpRadon3D
)- dottest
bool
, optional Apply dot-test
- **kwargs_solver
Arbitrary keyword arguments for
pylops.optimization.leastsquares.regularized_inversion
solver ifkind='spatial'
orpylops.optimization.sparsity.FISTA
solver otherwise
- data
- Returns
- recdata
np.ndarray
Reconstructed data of size \([n_{R_y}\,(\times n_{R_x} \times n_t)]\)
- recprec
np.ndarray
Reconstructed data in the sparse or preconditioned domain in case of
kind='fk'
,kind='radon-linear'
,kind='radon-parabolic'
,kind='radon-hyperbolic'
andkind='sliding'
- cost
np.ndarray
Cost function norm
- recdata
- Raises
- KeyError
If
kind
is neitherspatial
,fl
,radon-linear
,radon-parabolic
,radon-hyperbolic
norsliding
Notes
The problem of seismic data interpolation (or regularization) can be formally written as
\[\mathbf{y} = \mathbf{R} \mathbf{x}\]where a restriction or interpolation operator is applied along the spatial direction(s). Here \(\mathbf{y} = [\mathbf{y}_{R1}^T, \mathbf{y}_{R2}^T,\ldots, \mathbf{y}_{RN^T}]^T\) where each vector \(\mathbf{y}_{Ri}\) contains all time samples recorded in the seismic data at the specific receiver \(R_i\). Similarly, \(\mathbf{x} = [\mathbf{x}_{r1}^T, \mathbf{x}_{r2}^T,\ldots, \mathbf{x}_{rM}^T]\), contains all traces at the regularly and finely sampled receiver locations \(r_i\).
Several alternative approaches can be taken to solve such a problem. They mostly differ in the choice of the regularization (or preconditining) used to mitigate the ill-posedness of the problem:
spatial
: least-squares inversion in the original time-space domain with an additional spatial smoothing regularization term, corresponding to the cost function \(J = ||\mathbf{y} - \mathbf{R} \mathbf{x}||_2 + \epsilon_\nabla \nabla ||\mathbf{x}||_2\) where \(\nabla\) is a second order space derivative implemented viapylops.basicoperators.SecondDerivative
in 2-dimensional case andpylops.basicoperators.Laplacian
in 3-dimensional casefk
: L1 inversion in frequency-wavenumber preconditioned domain corresponding to the cost function \(J = ||\mathbf{y} - \mathbf{R} \mathbf{F} \mathbf{x}||_2\) where \(\mathbf{F}\) is frequency-wavenumber transform implemented viapylops.signalprocessing.FFT2D
in 2-dimensional case andpylops.signalprocessing.FFTND
in 3-dimensional caseradon-linear
: L1 inversion in linear Radon preconditioned domain using the same cost function asfk
but with \(\mathbf{F}\) being a Radon transform implemented viapylops.signalprocessing.Radon2D
in 2-dimensional case andpylops.signalprocessing.Radon3D
in 3-dimensional caseradon-parabolic
: L1 inversion in parabolic Radon preconditioned domainradon-hyperbolic
: L1 inversion in hyperbolic Radon preconditioned domainsliding
: L1 inversion in sliding-linear Radon preconditioned domain using the same cost function asfk
but with \(\mathbf{F}\) being a sliding Radon transform implemented viapylops.signalprocessing.Sliding2D
in 2-dimensional case andpylops.signalprocessing.Sliding3D
in 3-dimensional case