pylops.Real#

class pylops.Real(*args, **kwargs)[source]#

Real operator.

Return the real component of the input. The adjoint returns a complex number with the same real component as the input and zero imaginary component.

Parameters
dimsint or tuple

Number of samples for each dimension

dtypestr, optional

Type of elements in input array.

namestr, optional

New in version 2.0.0.

Name of operator (to be used by pylops.utils.describe.describe)

Notes

In forward mode:

\[y_{i} = \Re\{x_{i}\} \quad \forall i=0,\ldots,N-1\]

In adjoint mode:

\[x_{i} = \Re\{y_{i}\} + 0i \quad \forall i=0,\ldots,N-1\]
Attributes
shapetuple

Operator shape

explicitbool

Operator contains a matrix that can be solved explicitly (True) or not (False)

Methods

__init__(dims[, dtype, name])

Initialize this LinearOperator.

adjoint()

Hermitian adjoint.

apply_columns(cols)

Apply subset of columns of operator

cond([uselobpcg])

Condition number of linear operator.

conj()

Complex conjugate operator

div(y[, niter, densesolver])

Solve the linear problem \(\mathbf{y}=\mathbf{A}\mathbf{x}\).

dot(x)

Matrix-matrix or matrix-vector multiplication.

eigs([neigs, symmetric, niter, uselobpcg])

Most significant eigenvalues of linear operator.

matmat(X)

Matrix-matrix multiplication.

matvec(x)

Matrix-vector multiplication.

reset_count()

Reset counters

rmatmat(X)

Matrix-matrix multiplication.

rmatvec(x)

Adjoint matrix-vector multiplication.

todense([backend])

Return dense matrix.

toimag([forw, adj])

Imag operator

toreal([forw, adj])

Real operator

tosparse()

Return sparse matrix.

trace([neval, method, backend])

Trace of linear operator.

transpose()

Transpose this linear operator.

Examples using pylops.Real#

Real

Real

Real