pylops.Sum#
- class pylops.Sum(dims, axis=-1, forceflat=None, dtype='float64', name='S')[source]#
Sum operator.
Sum along
axis
of a multi-dimensional array (at least 2 dimensions are required) in forward model, and spread along the same axis in adjoint mode.- Parameters
- dims
tuple
Number of samples for each dimension
- axis
int
, optional New in version 2.0.0.
Axis along which model is summed.
- forceflat
bool
, optional New in version 2.2.0.
Force an array to be flattened after rmatvec. Note that this is only required when len(dims)=2, otherwise pylops will detect whether to return a 1d or nd array.
- dtype
str
, optional Type of elements in input array.
- name
str
, optional New in version 2.0.0.
Name of operator (to be used by
pylops.utils.describe.describe
)
- dims
Notes
Given a two dimensional array, the Sum operator re-arranges the input model into a multi-dimensional array of size
dims
and sums values alongaxis
:\[y_j = \sum_i x_{i, j}\]In adjoint mode, the data is spread along the same direction:
\[x_{i, j} = y_j \quad \forall i=0, N-1\]- Attributes
Methods
__init__
(dims[, axis, forceflat, dtype, name])adjoint
()apply_columns
(cols)Apply subset of columns of operator
cond
([uselobpcg])Condition number of linear operator.
conj
()Complex conjugate operator
div
(y[, niter, densesolver])Solve the linear problem \(\mathbf{y}=\mathbf{A}\mathbf{x}\).
dot
(x)Matrix-matrix or matrix-vector multiplication.
eigs
([neigs, symmetric, niter, uselobpcg])Most significant eigenvalues of linear operator.
matmat
(X)Matrix-matrix multiplication.
matvec
(x)Matrix-vector multiplication.
reset_count
()Reset counters
rmatmat
(X)Matrix-matrix multiplication.
rmatvec
(x)Adjoint matrix-vector multiplication.
todense
([backend])Return dense matrix.
toimag
([forw, adj])Imag operator
toreal
([forw, adj])Real operator
tosparse
()Return sparse matrix.
trace
([neval, method, backend])Trace of linear operator.
transpose
()