pylops.ToCupy#

class pylops.ToCupy(dims, dtype='float64', name='C')[source]#

Convert to CuPy.

Convert an input array to CuPy in forward mode, and convert back to NumPy in adjoint mode.

Parameters
dimslist or int

Number of samples for each dimension

dtypestr, optional

Type of elements in input array.

namestr, optional

Name of operator (to be used by pylops.utils.describe.describe)

Notes

The ToCupy operator is a special operator that does not perform any transformation on the input arrays other than converting them from NumPy to CuPy. This operator can be used when one is interested to create a chain of operators where only one (or some of them) act on CuPy arrays, whilst other operate on NumPy arrays.

Attributes
shapetuple

Operator shape

explicitbool

Operator contains a matrix that can be solved explicitly (True) or not (False)

Methods

__init__(dims[, dtype, name])

adjoint()

apply_columns(cols)

Apply subset of columns of operator

cond([uselobpcg])

Condition number of linear operator.

conj()

Complex conjugate operator

div(y[, niter, densesolver])

Solve the linear problem \(\mathbf{y}=\mathbf{A}\mathbf{x}\).

dot(x)

Matrix-matrix or matrix-vector multiplication.

eigs([neigs, symmetric, niter, uselobpcg])

Most significant eigenvalues of linear operator.

matmat(X)

Matrix-matrix multiplication.

matvec(x)

Matrix-vector multiplication.

reset_count()

Reset counters

rmatmat(X)

Matrix-matrix multiplication.

rmatvec(x)

Adjoint matrix-vector multiplication.

todense([backend])

Return dense matrix.

toimag([forw, adj])

Imag operator

toreal([forw, adj])

Real operator

tosparse()

Return sparse matrix.

trace([neval, method, backend])

Trace of linear operator.

transpose()