Note
Go to the end to download the full example code.
10. Marchenko redatuming by inversion#
This example shows how to set-up and run the
pylops.waveeqprocessing.Marchenko
inversion using synthetic data.
# sphinx_gallery_thumbnail_number = 5
# pylint: disable=C0103
import warnings
import matplotlib.pyplot as plt
import numpy as np
from scipy.signal import convolve
from pylops.waveeqprocessing import Marchenko
warnings.filterwarnings("ignore")
plt.close("all")
Let’s start by defining some input parameters and loading the test data
# Input parameters
inputfile = "../testdata/marchenko/input.npz"
vel = 2400.0 # velocity
toff = 0.045 # direct arrival time shift
nsmooth = 10 # time window smoothing
nfmax = 1000 # max frequency for MDC (#samples)
niter = 10 # iterations
inputdata = np.load(inputfile)
# Receivers
r = inputdata["r"]
nr = r.shape[1]
dr = r[0, 1] - r[0, 0]
# Sources
s = inputdata["s"]
ns = s.shape[1]
ds = s[0, 1] - s[0, 0]
# Virtual points
vs = inputdata["vs"]
# Density model
rho = inputdata["rho"]
z, x = inputdata["z"], inputdata["x"]
# Reflection data (R[s, r, t]) and subsurface fields
R = inputdata["R"][:, :, :-100]
R = np.swapaxes(R, 0, 1) # just because of how the data was saved
Gsub = inputdata["Gsub"][:-100]
G0sub = inputdata["G0sub"][:-100]
wav = inputdata["wav"]
wav_c = np.argmax(wav)
t = inputdata["t"][:-100]
ot, dt, nt = t[0], t[1] - t[0], len(t)
Gsub = np.apply_along_axis(convolve, 0, Gsub, wav, mode="full")
Gsub = Gsub[wav_c:][:nt]
G0sub = np.apply_along_axis(convolve, 0, G0sub, wav, mode="full")
G0sub = G0sub[wav_c:][:nt]
plt.figure(figsize=(10, 5))
plt.imshow(rho, cmap="gray", extent=(x[0], x[-1], z[-1], z[0]))
plt.scatter(s[0, 5::10], s[1, 5::10], marker="*", s=150, c="r", edgecolors="k")
plt.scatter(r[0, ::10], r[1, ::10], marker="v", s=150, c="b", edgecolors="k")
plt.scatter(vs[0], vs[1], marker=".", s=250, c="m", edgecolors="k")
plt.axis("tight")
plt.xlabel("x [m]")
plt.ylabel("y [m]")
plt.title("Model and Geometry")
plt.xlim(x[0], x[-1])
fig, axs = plt.subplots(1, 3, sharey=True, figsize=(12, 7))
axs[0].imshow(
R[0].T, cmap="gray", vmin=-1e-2, vmax=1e-2, extent=(r[0, 0], r[0, -1], t[-1], t[0])
)
axs[0].set_title("R shot=0")
axs[0].set_xlabel(r"$x_R$")
axs[0].set_ylabel(r"$t$")
axs[0].axis("tight")
axs[0].set_ylim(1.5, 0)
axs[1].imshow(
R[ns // 2].T,
cmap="gray",
vmin=-1e-2,
vmax=1e-2,
extent=(r[0, 0], r[0, -1], t[-1], t[0]),
)
axs[1].set_title("R shot=%d" % (ns // 2))
axs[1].set_xlabel(r"$x_R$")
axs[1].set_ylabel(r"$t$")
axs[1].axis("tight")
axs[1].set_ylim(1.5, 0)
axs[2].imshow(
R[-1].T, cmap="gray", vmin=-1e-2, vmax=1e-2, extent=(r[0, 0], r[0, -1], t[-1], t[0])
)
axs[2].set_title("R shot=%d" % ns)
axs[2].set_xlabel(r"$x_R$")
axs[2].axis("tight")
axs[2].set_ylim(1.5, 0)
fig.tight_layout()
fig, axs = plt.subplots(1, 2, sharey=True, figsize=(8, 6))
axs[0].imshow(
Gsub, cmap="gray", vmin=-1e6, vmax=1e6, extent=(r[0, 0], r[0, -1], t[-1], t[0])
)
axs[0].set_title("G")
axs[0].set_xlabel(r"$x_R$")
axs[0].set_ylabel(r"$t$")
axs[0].axis("tight")
axs[0].set_ylim(1.5, 0)
axs[1].imshow(
G0sub, cmap="gray", vmin=-1e6, vmax=1e6, extent=(r[0, 0], r[0, -1], t[-1], t[0])
)
axs[1].set_title("G0")
axs[1].set_xlabel(r"$x_R$")
axs[1].set_ylabel(r"$t$")
axs[1].axis("tight")
axs[1].set_ylim(1.5, 0)
fig.tight_layout()
Let’s now create an object of the
pylops.waveeqprocessing.Marchenko
class and apply redatuming
for a single subsurface point vs
.
# direct arrival window
trav = np.sqrt((vs[0] - r[0]) ** 2 + (vs[1] - r[1]) ** 2) / vel
MarchenkoWM = Marchenko(
R, dt=dt, dr=dr, nfmax=nfmax, wav=wav, toff=toff, nsmooth=nsmooth
)
(
f1_inv_minus,
f1_inv_plus,
p0_minus,
g_inv_minus,
g_inv_plus,
) = MarchenkoWM.apply_onepoint(
trav,
G0=G0sub.T,
rtm=True,
greens=True,
dottest=True,
**dict(iter_lim=niter, show=True)
)
g_inv_tot = g_inv_minus + g_inv_plus
Dot test passed, v^H(Opu)=405.16509639614327 - u^H(Op^Hv)=405.1650963961441
Dot test passed, v^H(Opu)=172.0650756105134 - u^H(Op^Hv)=172.06507561051325
LSQR Least-squares solution of Ax = b
The matrix A has 282598 rows and 282598 columns
damp = 0.00000000000000e+00 calc_var = 0
atol = 1.00e-06 conlim = 1.00e+08
btol = 1.00e-06 iter_lim = 10
Itn x[0] r1norm r2norm Compatible LS Norm A Cond A
0 0.00000e+00 3.134e+07 3.134e+07 1.0e+00 3.3e-08
1 0.00000e+00 1.374e+07 1.374e+07 4.4e-01 9.3e-01 1.1e+00 1.0e+00
2 0.00000e+00 7.770e+06 7.770e+06 2.5e-01 3.9e-01 1.8e+00 2.2e+00
3 0.00000e+00 5.750e+06 5.750e+06 1.8e-01 3.3e-01 2.1e+00 3.4e+00
4 0.00000e+00 3.930e+06 3.930e+06 1.3e-01 3.4e-01 2.5e+00 5.1e+00
5 0.00000e+00 3.042e+06 3.042e+06 9.7e-02 2.6e-01 2.9e+00 6.8e+00
6 0.00000e+00 2.423e+06 2.423e+06 7.7e-02 2.2e-01 3.3e+00 8.6e+00
7 0.00000e+00 1.675e+06 1.675e+06 5.3e-02 2.5e-01 3.6e+00 1.1e+01
8 0.00000e+00 1.248e+06 1.248e+06 4.0e-02 2.0e-01 3.9e+00 1.3e+01
9 0.00000e+00 1.004e+06 1.004e+06 3.2e-02 1.5e-01 4.2e+00 1.4e+01
10 0.00000e+00 7.762e+05 7.762e+05 2.5e-02 1.8e-01 4.4e+00 1.6e+01
LSQR finished
The iteration limit has been reached
istop = 7 r1norm = 7.8e+05 anorm = 4.4e+00 arnorm = 6.1e+05
itn = 10 r2norm = 7.8e+05 acond = 1.6e+01 xnorm = 3.6e+07
We can now compare the result of Marchenko redatuming via LSQR with standard redatuming
fig, axs = plt.subplots(1, 3, sharey=True, figsize=(12, 7))
axs[0].imshow(
p0_minus.T,
cmap="gray",
vmin=-5e5,
vmax=5e5,
extent=(r[0, 0], r[0, -1], t[-1], -t[-1]),
)
axs[0].set_title(r"$p_0^-$")
axs[0].set_xlabel(r"$x_R$")
axs[0].set_ylabel(r"$t$")
axs[0].axis("tight")
axs[0].set_ylim(1.2, 0)
axs[1].imshow(
g_inv_minus.T,
cmap="gray",
vmin=-5e5,
vmax=5e5,
extent=(r[0, 0], r[0, -1], t[-1], -t[-1]),
)
axs[1].set_title(r"$g^-$")
axs[1].set_xlabel(r"$x_R$")
axs[1].set_ylabel(r"$t$")
axs[1].axis("tight")
axs[1].set_ylim(1.2, 0)
axs[2].imshow(
g_inv_plus.T,
cmap="gray",
vmin=-5e5,
vmax=5e5,
extent=(r[0, 0], r[0, -1], t[-1], -t[-1]),
)
axs[2].set_title(r"$g^+$")
axs[2].set_xlabel(r"$x_R$")
axs[2].set_ylabel(r"$t$")
axs[2].axis("tight")
axs[2].set_ylim(1.2, 0)
fig.tight_layout()
fig = plt.figure(figsize=(12, 7))
ax1 = plt.subplot2grid((1, 5), (0, 0), colspan=2)
ax2 = plt.subplot2grid((1, 5), (0, 2), colspan=2)
ax3 = plt.subplot2grid((1, 5), (0, 4))
ax1.imshow(
Gsub, cmap="gray", vmin=-5e5, vmax=5e5, extent=(r[0, 0], r[0, -1], t[-1], t[0])
)
ax1.set_title(r"$G_{true}$")
axs[0].set_xlabel(r"$x_R$")
axs[0].set_ylabel(r"$t$")
ax1.axis("tight")
ax1.set_ylim(1.2, 0)
ax2.imshow(
g_inv_tot.T,
cmap="gray",
vmin=-5e5,
vmax=5e5,
extent=(r[0, 0], r[0, -1], t[-1], -t[-1]),
)
ax2.set_title(r"$G_{est}$")
axs[1].set_xlabel(r"$x_R$")
axs[1].set_ylabel(r"$t$")
ax2.axis("tight")
ax2.set_ylim(1.2, 0)
ax3.plot(Gsub[:, nr // 2] / Gsub.max(), t, "r", lw=5)
ax3.plot(g_inv_tot[nr // 2, nt - 1 :] / g_inv_tot.max(), t, "k", lw=3)
ax3.set_ylim(1.2, 0)
fig.tight_layout()
Note that Marchenko redatuming can also be applied simultaneously
to multiple subsurface points. Use
pylops.waveeqprocessing.Marchenko.apply_multiplepoints
instead of
pylops.waveeqprocessing.Marchenko.apply_onepoint
.
Total running time of the script: (0 minutes 8.552 seconds)