Source code for pylops.basicoperators.linearregression
__all__ = ["LinearRegression"]
import logging
import numpy.typing as npt
from pylops.basicoperators import Regression
from pylops.utils.typing import DTypeLike
logging.basicConfig(format="%(levelname)s: %(message)s", level=logging.WARNING)
[docs]class LinearRegression(Regression):
r"""Linear regression.
Creates an operator that applies linear regression to a set of points.
Values along the :math:`t`-axis must be provided while initializing the operator.
Intercept and gradient form the model vector to be provided in forward
mode, while the values of the regression line curve shall be provided
in adjoint mode.
Parameters
----------
taxis : :obj:`numpy.ndarray`
Elements along the :math:`t`-axis.
dtype : :obj:`str`, optional
Type of elements in input array.
Attributes
----------
shape : :obj:`tuple`
Operator shape
explicit : :obj:`bool`
Operator contains a matrix that can be solved explicitly
(``True``) or not (``False``)
Raises
------
TypeError
If ``taxis`` is not :obj:`numpy.ndarray`.
See Also
--------
Regression: Polynomial regression
Notes
-----
The LinearRegression operator solves the following problem:
.. math::
y_i = x_0 + x_1 t_i \qquad \forall i=0,1,\ldots,N-1
We can express this problem in a matrix form
.. math::
\mathbf{y}= \mathbf{A} \mathbf{x}
where
.. math::
\mathbf{y}= [y_0, y_1,\ldots,y_{N-1}]^T, \qquad \mathbf{x}= [x_0, x_1]^T
and
.. math::
\mathbf{A}
= \begin{bmatrix}
1 & t_{0} \\
1 & t_{1} \\
\vdots & \vdots \\
1 & t_{N-1}
\end{bmatrix}
Note that this is a particular case of the :py:class:`pylops.Regression`
operator and it is in fact just a lazy call of that operator with
``order=1``.
"""
def __init__(self, taxis: npt.ArrayLike, dtype: DTypeLike = "float64", name: str = 'L'):
super().__init__(taxis=taxis, order=1, dtype=dtype, name=name)