Source code for pylops.basicoperators.matrixmult
__all__ = ["MatrixMult"]
import logging
from typing import Optional, Union
import numpy as np
import scipy as sp
from scipy.sparse.linalg import inv
from pylops import LinearOperator
from pylops.utils._internal import _value_or_sized_to_array
from pylops.utils.backend import get_array_module
from pylops.utils.typing import DTypeLike, InputDimsLike, NDArray
logging.basicConfig(format="%(levelname)s: %(message)s", level=logging.WARNING)
[docs]class MatrixMult(LinearOperator):
r"""Matrix multiplication.
Simple wrapper to :py:func:`numpy.dot` and :py:func:`numpy.vdot` for
an input matrix :math:`\mathbf{A}`.
Parameters
----------
A : :obj:`numpy.ndarray` or :obj:`scipy.sparse` matrix
Matrix.
otherdims : :obj:`tuple`, optional
Number of samples for each other dimension of model
(model/data will be reshaped and ``A`` applied multiple times
to each column of the model/data).
dtype : :obj:`str`, optional
Type of elements in input array.
name : :obj:`str`, optional
.. versionadded:: 2.0.0
Name of operator (to be used by :func:`pylops.utils.describe.describe`)
Attributes
----------
dimsd : :obj:`tuple`
Shape of the array after the forward, but before linearization.
For example, ``y_reshaped = (Op * x.ravel()).reshape(Op.dimsd)``.
shape : :obj:`tuple`
Operator shape
explicit : :obj:`bool`
Operator contains a matrix that can be solved explicitly
(``True``) or not (``False``)
complex : :obj:`bool`
Matrix has complex numbers (``True``) or not (``False``)
"""
def __init__(
self,
A: NDArray,
otherdims: Optional[Union[int, InputDimsLike]] = None,
dtype: DTypeLike = "float64",
name: str = "M",
) -> None:
ncp = get_array_module(A)
self.A = A
if isinstance(A, ncp.ndarray):
self.complex = np.iscomplexobj(A)
else:
self.complex = np.iscomplexobj(A.data)
if otherdims is None:
dims, dimsd = (A.shape[1],), (A.shape[0],)
self.reshape = False
explicit = True
else:
otherdims = _value_or_sized_to_array(otherdims)
self.otherdims = np.array(otherdims, dtype=int)
dims, dimsd = np.insert(self.otherdims, 0, self.A.shape[1]), np.insert(
self.otherdims, 0, self.A.shape[0]
)
self.dimsflatten, self.dimsdflatten = np.insert(
[np.prod(self.otherdims)], 0, self.A.shape[1]
), np.insert([np.prod(self.otherdims)], 0, self.A.shape[0])
self.reshape = True
explicit = False
# Check dtype for correctness (upcast to complex when A is complex)
if np.iscomplexobj(A) and not np.iscomplexobj(np.ones(1, dtype=dtype)):
dtype = A.dtype
logging.warning("Matrix A is a complex object, dtype cast to %s" % dtype)
super().__init__(
dtype=np.dtype(dtype), dims=dims, dimsd=dimsd, explicit=explicit, name=name
)
def _matvec(self, x: NDArray) -> NDArray:
ncp = get_array_module(x)
if self.reshape:
x = ncp.reshape(x, self.dimsflatten)
y = self.A.dot(x)
if self.reshape:
return y.ravel()
else:
return y
def _rmatvec(self, x: NDArray) -> NDArray:
ncp = get_array_module(x)
if self.reshape:
x = ncp.reshape(x, self.dimsdflatten)
if self.complex:
y = (self.A.T.dot(x.conj())).conj()
else:
y = self.A.T.dot(x)
if self.reshape:
return y.ravel()
else:
return y
def inv(self) -> NDArray:
r"""Return the inverse of :math:`\mathbf{A}`.
Returns
----------
Ainv : :obj:`numpy.ndarray`
Inverse matrix.
"""
if sp.sparse.issparse(self.A):
Ainv = inv(self.A)
else:
ncp = get_array_module(self.A)
Ainv = ncp.linalg.inv(self.A)
return Ainv