Source code for pylops.basicoperators.smoothing1d
__all__ = ["Smoothing1D"]
from typing import Union
import numpy as np
from pylops.signalprocessing import Convolve1D
from pylops.utils.typing import DTypeLike, InputDimsLike
[docs]class Smoothing1D(Convolve1D):
r"""1D Smoothing.
Apply smoothing to model (and data) to a multi-dimensional array
along ``axis``.
Parameters
----------
nsmooth : :obj:`int`
Length of smoothing operator (must be odd)
dims : :obj:`tuple` or :obj:`int`
Number of samples for each dimension
axis : :obj:`int`, optional
.. versionadded:: 2.0.0
Axis along which model (and data) are smoothed.
dtype : :obj:`str`, optional
Type of elements in input array.
Attributes
----------
shape : :obj:`tuple`
Operator shape
explicit : :obj:`bool`
Operator contains a matrix that can be solved explicitly (``True``) or
not (``False``)
Notes
-----
The Smoothing1D operator is a special type of convolutional operator that
convolves the input model (or data) with a constant filter of size
:math:`n_\text{smooth}`:
.. math::
\mathbf{f} = [ 1/n_\text{smooth}, 1/n_\text{smooth}, ..., 1/n_\text{smooth} ]
When applied to the first direction:
.. math::
y[i,j,k] = 1/n_\text{smooth} \sum_{l=-(n_\text{smooth}-1)/2}^{(n_\text{smooth}-1)/2}
x[l,j,k]
Similarly when applied to the second direction:
.. math::
y[i,j,k] = 1/n_\text{smooth} \sum_{l=-(n_\text{smooth}-1)/2}^{(n_\text{smooth}-1)/2}
x[i,l,k]
and the third direction:
.. math::
y[i,j,k] = 1/n_\text{smooth} \sum_{l=-(n_\text{smooth}-1)/2}^{(n_\text{smooth}-1)/2}
x[i,j,l]
Note that since the filter is symmetrical, the *Smoothing1D* operator is
self-adjoint.
"""
def __init__(self, nsmooth: int, dims: Union[int, InputDimsLike], axis: int = -1,
dtype: DTypeLike = "float64", name: str = 'S'):
if nsmooth % 2 == 0:
nsmooth += 1
h = np.ones(nsmooth) / float(nsmooth)
offset = (nsmooth - 1) // 2
super().__init__(dims=dims, h=h, axis=axis, offset=offset, dtype=dtype, name=name)