Source code for pylops.basicoperators.sum
__all__ = ["Sum"]
import numpy as np
from pylops import LinearOperator
from pylops.utils._internal import _value_or_sized_to_tuple
from pylops.utils.backend import get_array_module
from pylops.utils.decorators import reshaped
from pylops.utils.typing import DTypeLike, InputDimsLike, NDArray
[docs]class Sum(LinearOperator):
r"""Sum operator.
Sum along ``axis`` of a multi-dimensional
array (at least 2 dimensions are required) in forward model, and spread
along the same axis in adjoint mode.
Parameters
----------
dims : :obj:`tuple`
Number of samples for each dimension
axis : :obj:`int`, optional
.. versionadded:: 2.0.0
Axis along which model is summed.
dtype : :obj:`str`, optional
Type of elements in input array.
name : :obj:`str`, optional
.. versionadded:: 2.0.0
Name of operator (to be used by :func:`pylops.utils.describe.describe`)
Attributes
----------
shape : :obj:`tuple`
Operator shape
explicit : :obj:`bool`
Operator contains a matrix that can be solved explicitly (``True``) or
not (``False``)
Notes
-----
Given a two dimensional array, the *Sum* operator re-arranges
the input model into a multi-dimensional array
of size ``dims`` and sums values along ``axis``:
.. math::
y_j = \sum_i x_{i, j}
In adjoint mode, the data is spread along the same direction:
.. math::
x_{i, j} = y_j \quad \forall i=0, N-1
"""
def __init__(
self,
dims: InputDimsLike,
axis: int = -1,
dtype: DTypeLike = "float64",
name: str = "S",
) -> None:
dims = _value_or_sized_to_tuple(dims)
# to avoid reducing matvec to a scalar
dims = (dims[0], 1) if len(dims) == 1 else dims
self.axis = axis
# data dimensions
dimsd = list(dims).copy()
dimsd.pop(self.axis)
super().__init__(dtype=np.dtype(dtype), dims=dims, dimsd=dimsd, name=name)
# array of ones with dims of model in self.axis for np.tile in adjoint mode
self.tile = np.ones(len(self.dims), dtype=int)
self.tile[self.axis] = self.dims[self.axis]
@reshaped
def _matvec(self, x: NDArray) -> NDArray:
return x.sum(axis=self.axis)
@reshaped
def _rmatvec(self, x: NDArray) -> NDArray:
ncp = get_array_module(x)
y = ncp.expand_dims(x, self.axis)
y = ncp.tile(y, self.tile)
return y