Source code for pylops.signalprocessing.chirpradon2d

__all__ = ["ChirpRadon2D"]

import logging

import numpy as np

from pylops import LinearOperator
from pylops.utils.decorators import reshaped
from pylops.utils.typing import DTypeLike, NDArray

from ._chirpradon2d import _chirp_radon_2d

logging.basicConfig(format="%(levelname)s: %(message)s", level=logging.WARNING)


[docs]class ChirpRadon2D(LinearOperator): r"""2D Chirp Radon transform Apply Radon forward (and adjoint) transform using Fast Fourier Transform and Chirp functions to a 2-dimensional array of size :math:`[n_x \times n_t]` (both in forward and adjoint mode). Note that forward and adjoint are swapped compared to the time-space implementation in :class:`pylops.signalprocessing.Radon2D` and a direct `inverse` method is also available for this implementation. Parameters ---------- taxis : :obj:`np.ndarray` Time axis haxis : :obj:`np.ndarray` Spatial axis pmax : :obj:`np.ndarray` Maximum slope defined as :math:`\tan` of maximum stacking angle in :math:`x` direction :math:`p_\text{max} = \tan(\alpha_{x, \text{max}})`. If one operates in terms of minimum velocity :math:`c_0`, set :math:`p_{x, \text{max}}=c_0 \,\mathrm{d}y/\mathrm{d}t`. dtype : :obj:`str`, optional Type of elements in input array. name : :obj:`str`, optional .. versionadded:: 2.0.0 Name of operator (to be used by :func:`pylops.utils.describe.describe`) Attributes ---------- shape : :obj:`tuple` Operator shape explicit : :obj:`bool` Operator contains a matrix that can be solved explicitly (``True``) or not (``False``) Notes ----- Refer to [1]_ for the theoretical and implementation details. .. [1] Andersson, F and Robertsson J. "Fast :math:`\tau-p` transforms by chirp modulation", Geophysics, vol 84, NO.1, pp. A13-A17, 2019. """ def __init__( self, taxis: NDArray, haxis: NDArray, pmax: float, dtype: DTypeLike = "float64", name: str = "C", ) -> None: dims = len(haxis), len(taxis) super().__init__(dtype=np.dtype(dtype), dims=dims, dimsd=dims, name=name) self.nh, self.nt = self.dims self.dt = taxis[1] - taxis[0] self.dh = haxis[1] - haxis[0] self.pmax = pmax @reshaped def _matvec(self, x: NDArray) -> NDArray: return _chirp_radon_2d(x, self.dt, self.dh, self.pmax, mode="f") @reshaped def _rmatvec(self, x: NDArray) -> NDArray: return _chirp_radon_2d(x, self.dt, self.dh, self.pmax, mode="a") def inverse(self, x: NDArray) -> NDArray: x = x.reshape(self.dimsd) y = _chirp_radon_2d(x, self.dt, self.dh, self.pmax, mode="i") return y.ravel()