Source code for pylops.signalprocessing.chirpradon2d
__all__ = ["ChirpRadon2D"]
import logging
import numpy as np
from pylops import LinearOperator
from pylops.utils.decorators import reshaped
from pylops.utils.typing import DTypeLike, NDArray
from ._chirpradon2d import _chirp_radon_2d
logging.basicConfig(format="%(levelname)s: %(message)s", level=logging.WARNING)
[docs]class ChirpRadon2D(LinearOperator):
r"""2D Chirp Radon transform
Apply Radon forward (and adjoint) transform using Fast
Fourier Transform and Chirp functions to a 2-dimensional array of size
:math:`[n_x \times n_t]` (both in forward and adjoint mode).
Note that forward and adjoint are swapped compared to the time-space
implementation in :class:`pylops.signalprocessing.Radon2D` and a direct
`inverse` method is also available for this implementation.
Parameters
----------
taxis : :obj:`np.ndarray`
Time axis
haxis : :obj:`np.ndarray`
Spatial axis
pmax : :obj:`np.ndarray`
Maximum slope defined as :math:`\tan` of maximum stacking angle in
:math:`x` direction :math:`p_\text{max} = \tan(\alpha_{x, \text{max}})`.
If one operates in terms of minimum velocity :math:`c_0`, set
:math:`p_{x, \text{max}}=c_0 \,\mathrm{d}y/\mathrm{d}t`.
dtype : :obj:`str`, optional
Type of elements in input array.
name : :obj:`str`, optional
.. versionadded:: 2.0.0
Name of operator (to be used by :func:`pylops.utils.describe.describe`)
Attributes
----------
shape : :obj:`tuple`
Operator shape
explicit : :obj:`bool`
Operator contains a matrix that can be solved explicitly (``True``) or
not (``False``)
Notes
-----
Refer to [1]_ for the theoretical and implementation details.
.. [1] Andersson, F and Robertsson J. "Fast :math:`\tau-p` transforms by
chirp modulation", Geophysics, vol 84, NO.1, pp. A13-A17, 2019.
"""
def __init__(
self,
taxis: NDArray,
haxis: NDArray,
pmax: float,
dtype: DTypeLike = "float64",
name: str = "C",
) -> None:
dims = len(haxis), len(taxis)
super().__init__(dtype=np.dtype(dtype), dims=dims, dimsd=dims, name=name)
self.nh, self.nt = self.dims
self.dt = taxis[1] - taxis[0]
self.dh = haxis[1] - haxis[0]
self.pmax = pmax
@reshaped
def _matvec(self, x: NDArray) -> NDArray:
return _chirp_radon_2d(x, self.dt, self.dh, self.pmax, mode="f")
@reshaped
def _rmatvec(self, x: NDArray) -> NDArray:
return _chirp_radon_2d(x, self.dt, self.dh, self.pmax, mode="a")
def inverse(self, x: NDArray) -> NDArray:
x = x.reshape(self.dimsd)
y = _chirp_radon_2d(x, self.dt, self.dh, self.pmax, mode="i")
return y.ravel()