Source code for pylops.signalprocessing.fredholm1

__all__ = ["Fredholm1"]

import numpy as np

from pylops import LinearOperator
from pylops.utils.backend import get_array_module, inplace_set
from pylops.utils.decorators import reshaped
from pylops.utils.typing import DTypeLike, NDArray


[docs]class Fredholm1(LinearOperator): r"""Fredholm integral of first kind. Implement a multi-dimensional Fredholm integral of first kind. Note that if the integral is two dimensional, this can be directly implemented using :class:`pylops.basicoperators.MatrixMult`. A multi-dimensional Fredholm integral can be performed as a :class:`pylops.basicoperators.BlockDiag` operator of a series of :class:`pylops.basicoperators.MatrixMult`. However, here we take advantage of the structure of the kernel and perform it in a more efficient manner. Parameters ---------- G : :obj:`numpy.ndarray` Multi-dimensional convolution kernel of size :math:`[n_{\text{slice}} \times n_x \times n_y]` nz : :obj:`int`, optional Additional dimension of model saveGt : :obj:`bool`, optional Save ``G`` and ``G.H`` to speed up the computation of adjoint (``True``) or create ``G.H`` on-the-fly (``False``) Note that ``saveGt=True`` will double the amount of required memory usematmul : :obj:`bool`, optional Use :func:`numpy.matmul` (``True``) or for-loop with :func:`numpy.dot` (``False``). As it is not possible to define which approach is more performant (this is highly dependent on the size of ``G`` and input arrays as well as the hardware used in the computation), we advise users to time both methods for their specific problem prior to making a choice. dtype : :obj:`str`, optional Type of elements in input array. name : :obj:`str`, optional .. versionadded:: 2.0.0 Name of operator (to be used by :func:`pylops.utils.describe.describe`) Attributes ---------- shape : :obj:`tuple` Operator shape explicit : :obj:`bool` Operator contains a matrix that can be solved explicitly (``True``) or not (``False``) Notes ----- A multi-dimensional Fredholm integral of first kind can be expressed as .. math:: d(k, x, z) = \int{G(k, x, y) m(k, y, z) \,\mathrm{d}y} \quad \forall k=1,\ldots,n_{slice} on the other hand its adjoint is expressed as .. math:: m(k, y, z) = \int{G^*(k, y, x) d(k, x, z) \,\mathrm{d}x} \quad \forall k=1,\ldots,n_{\text{slice}} In discrete form, this operator can be seen as a block-diagonal matrix multiplication: .. math:: \begin{bmatrix} \mathbf{G}_{k=1} & \mathbf{0} & \ldots & \mathbf{0} \\ \mathbf{0} & \mathbf{G}_{k=2} & \ldots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \ldots & \mathbf{G}_{k=N} \end{bmatrix} \begin{bmatrix} \mathbf{m}_{k=1} \\ \mathbf{m}_{k=2} \\ \vdots \\ \mathbf{m}_{k=N} \end{bmatrix} """ def __init__( self, G: NDArray, nz: int = 1, saveGt: bool = True, usematmul: bool = True, dtype: DTypeLike = "float64", name: str = "F", ) -> None: self.nz = nz self.nsl, self.nx, self.ny = G.shape dims = (self.nsl, self.ny, self.nz) dimsd = (self.nsl, self.nx, self.nz) super().__init__(dtype=np.dtype(dtype), dims=dims, dimsd=dimsd, name=name) self.G = G if saveGt: self.GT = G.transpose((0, 2, 1)).conj() self.usematmul = usematmul @reshaped def _matvec(self, x: NDArray) -> NDArray: ncp = get_array_module(x) x = x.squeeze() if self.usematmul: if self.nz == 1: x = x[..., ncp.newaxis] y = ncp.matmul(self.G, x) else: y = ncp.squeeze(ncp.zeros((self.nsl, self.nx, self.nz), dtype=self.dtype)) for isl in range(self.nsl): y = inplace_set(ncp.dot(self.G[isl], x[isl]), y, isl) return y @reshaped def _rmatvec(self, x: NDArray) -> NDArray: ncp = get_array_module(x) x = x.squeeze() if self.usematmul: if self.nz == 1: x = x[..., ncp.newaxis] if hasattr(self, "GT"): y = ncp.matmul(self.GT, x) else: y = ( ncp.matmul(x.transpose(0, 2, 1).conj(), self.G) .transpose(0, 2, 1) .conj() ) else: y = ncp.squeeze(ncp.zeros((self.nsl, self.ny, self.nz), dtype=self.dtype)) if hasattr(self, "GT"): for isl in range(self.nsl): y = inplace_set(ncp.dot(self.GT[isl], x[isl]), y, isl) else: for isl in range(self.nsl): y = inplace_set( ncp.dot(x[isl].T.conj(), self.G[isl]).T.conj(), y, isl ) return y.ravel()