Source code for pylops.basicoperators.flip
__all__ = ["Flip"]
from typing import Union
import numpy as np
from pylops import LinearOperator
from pylops.utils._internal import _value_or_sized_to_tuple
from pylops.utils.decorators import reshaped
from pylops.utils.typing import DTypeLike, InputDimsLike, NDArray
[docs]class Flip(LinearOperator):
r"""Flip along an axis.
Flip a multi-dimensional array along ``axis``.
Parameters
----------
dims : :obj:`list` or :obj:`int`
Number of samples for each dimension
axis : :obj:`int`, optional
.. versionadded:: 2.0.0
Axis along which model is flipped.
dtype : :obj:`str`, optional
Type of elements in input array.
name : :obj:`str`, optional
.. versionadded:: 2.0.0
Name of operator (to be used by :func:`pylops.utils.describe.describe`)
Attributes
----------
shape : :obj:`tuple`
Operator shape
explicit : :obj:`bool`
Operator contains a matrix that can be solved explicitly
(``True``) or not (``False``)
Notes
-----
The Flip operator flips the input model (and data) along any chosen
direction. For simplicity, given a one dimensional array,
in forward mode this is equivalent to:
.. math::
y[i] = x[N-1-i] \quad \forall i=0,1,2,\ldots,N-1
where :math:`N` is the dimension of the input model along ``axis``. As this operator is
self-adjoint, :math:`x` and :math:`y` in the equation above are simply
swapped in adjoint mode.
"""
def __init__(
self,
dims: Union[int, InputDimsLike],
axis: int = -1,
dtype: DTypeLike = "float64",
name: str = "F",
) -> None:
dims = _value_or_sized_to_tuple(dims)
super().__init__(dtype=np.dtype(dtype), dims=dims, dimsd=dims, name=name)
self.axis = axis
@reshaped(swapaxis=True)
def _matvec(self, x: NDArray) -> NDArray:
y = np.flip(x, axis=-1)
return y
def _rmatvec(self, x: NDArray) -> NDArray:
return self._matvec(x)