Source code for pylops.optimization.cls_sparsity

__all__ = ["IRLS"]
import logging
import time
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple

import numpy as np
from scipy.sparse.linalg import lsqr

from pylops import LinearOperator
from pylops.basicoperators import Diagonal, Identity, VStack
from pylops.optimization.basesolver import Solver
from pylops.optimization.basic import cgls
from pylops.optimization.eigs import power_iteration
from pylops.optimization.leastsquares import regularized_inversion
from pylops.utils import deps
from pylops.utils.backend import get_array_module, get_module_name
from pylops.utils.typing import InputDimsLike, NDArray, SamplingLike

spgl1_message = deps.spgl1_import("the spgl1 solver")

if spgl1_message is None:
    from spgl1 import spgl1 as ext_spgl1


def _hardthreshold(x: NDArray, thresh: float) -> NDArray:
    r"""Hard thresholding.

    Applies hard thresholding to vector ``x`` (equal to the proximity
    operator for :math:`\|\mathbf{x}\|_0`) as shown in [1]_.

    .. [1] Chen, F., Shen, L., Suter, B.W., “Computing the proximity
       operator of the ℓp norm with 0 < p < 1”,
       IET Signal Processing, vol. 10. 2016.

    Parameters
    ----------
    x : :obj:`numpy.ndarray`
        Vector
    thresh : :obj:`float`
        Threshold

    Returns
    -------
    x1 : :obj:`numpy.ndarray`
        Tresholded vector

    """
    x1 = x.copy()
    x1[np.abs(x) <= np.sqrt(2 * thresh)] = 0
    return x1


def _softthreshold(x: NDArray, thresh: float) -> NDArray:
    r"""Soft thresholding.

    Applies soft thresholding to vector ``x`` (equal to the proximity
    operator for :math:`\|\mathbf{x}\|_1`) as shown in [1]_.

    .. [1] Chen, F., Shen, L., Suter, B.W., “Computing the proximity
       operator of the ℓp norm with 0 < p < 1”,
       IET Signal Processing, vol. 10. 2016.

    Parameters
    ----------
    x : :obj:`numpy.ndarray`
        Vector
    thresh : :obj:`float`
        Threshold

    Returns
    -------
    x1 : :obj:`numpy.ndarray`
        Tresholded vector

    """
    if np.iscomplexobj(x):
        # https://stats.stackexchange.com/questions/357339/soft-thresholding-
        # for-the-lasso-with-complex-valued-data
        x1 = np.maximum(np.abs(x) - thresh, 0.0) * np.exp(1j * np.angle(x))
    else:
        x1 = np.maximum(np.abs(x) - thresh, 0.0) * np.sign(x)
    return x1


def _halfthreshold(x: NDArray, thresh: float) -> NDArray:
    r"""Half thresholding.

    Applies half thresholding to vector ``x`` (equal to the proximity
    operator for :math:`\|\mathbf{x}\|_{1/2}^{1/2}`) as shown in [1]_.

    .. [1] Chen, F., Shen, L., Suter, B.W., “Computing the proximity
       operator of the ℓp norm with 0 < p < 1”,
       IET Signal Processing, vol. 10. 2016.

    Parameters
    ----------
    x : :obj:`numpy.ndarray`
        Vector
    thresh : :obj:`float`
        Threshold

    Returns
    -------
    x1 : :obj:`numpy.ndarray`
        Tresholded vector

        .. warning::
            Since version 1.17.0 does not produce ``np.nan`` on bad input.

    """
    arg = np.ones_like(x)
    arg[x != 0] = (thresh / 8.0) * (np.abs(x[x != 0]) / 3.0) ** (-1.5)
    arg = np.clip(arg, -1, 1)
    phi = 2.0 / 3.0 * np.arccos(arg)
    x1 = 2.0 / 3.0 * x * (1 + np.cos(2.0 * np.pi / 3.0 - phi))
    # x1[np.abs(x) <= 1.5 * thresh ** (2. / 3.)] = 0
    x1[np.abs(x) <= (54 ** (1.0 / 3.0) / 4.0) * thresh ** (2.0 / 3.0)] = 0
    return x1


def _hardthreshold_percentile(x: NDArray, perc: float) -> NDArray:
    r"""Percentile Hard thresholding.

    Applies hard thresholding to vector ``x`` using a percentile to define
    the amount of values in the input vector to be preserved as shown in [1]_.

    .. [1] Chen, Y., Chen, K., Shi, P., Wang, Y., “Irregular seismic
       data reconstruction using a percentile-half-thresholding algorithm”,
       Journal of Geophysics and Engineering, vol. 11. 2014.

    Parameters
    ----------
    x : :obj:`numpy.ndarray`
        Vector
    thresh : :obj:`float`
        Threshold

    Returns
    -------
    x1 : :obj:`numpy.ndarray`
        Tresholded vector

    """
    thresh = np.percentile(np.abs(x), perc)
    return _hardthreshold(x, 0.5 * thresh**2)


def _softthreshold_percentile(x: NDArray, perc: float) -> NDArray:
    r"""Percentile Soft thresholding.

    Applies soft thresholding to vector ``x`` using a percentile to define
    the amount of values in the input vector to be preserved as shown in [1]_.

    .. [1] Chen, Y., Chen, K., Shi, P., Wang, Y., “Irregular seismic
       data reconstruction using a percentile-half-thresholding algorithm”,
       Journal of Geophysics and Engineering, vol. 11. 2014.

    Parameters
    ----------
    x : :obj:`numpy.ndarray`
        Vector
    perc : :obj:`float`
        Percentile

    Returns
    -------
    x : :obj:`numpy.ndarray`
        Tresholded vector

    """
    thresh = np.percentile(np.abs(x), perc)
    return _softthreshold(x, thresh)


def _halfthreshold_percentile(x: NDArray, perc: float) -> NDArray:
    r"""Percentile Half thresholding.

    Applies half thresholding to vector ``x`` using a percentile to define
    the amount of values in the input vector to be preserved as shown in [1]_.

    .. [1] Xu, Z., Xiangyu, C., Xu, F. and Zhang, H., “L1/2 Regularization: A
       Thresholding Representation Theory and a Fast Solver”, IEEE Transactions
       on Neural Networks and Learning Systems, vol. 23. 2012.

    Parameters
    ----------
    x : :obj:`numpy.ndarray`
        Vector
    perc : :obj:`float`
        Percentile

    Returns
    -------
    x : :obj:`numpy.ndarray`
        Thresholded vector

    """
    thresh = np.percentile(np.abs(x), perc)
    # return _halfthreshold(x, (2. / 3. * thresh) ** (1.5))
    return _halfthreshold(x, (4.0 / 54 ** (1.0 / 3.0) * thresh) ** 1.5)


[docs]class IRLS(Solver): r"""Iteratively reweighted least squares. Solve an optimization problem with :math:`L_1` cost function (data IRLS) or :math:`L_1` regularization term (model IRLS) given the operator ``Op`` and data ``y``. In the *data IRLS*, the cost function is minimized by iteratively solving a weighted least squares problem with the weight at iteration :math:`i` being based on the data residual at iteration :math:`i-1`. This IRLS solver is robust to *outliers* since the L1 norm given less weight to large residuals than L2 norm does. Similarly in the *model IRLS*, the weight at at iteration :math:`i` is based on the model at iteration :math:`i-1`. This IRLS solver inverts for a sparse model vector. Parameters ---------- Op : :obj:`pylops.LinearOperator` Operator to invert Raises ------ NotImplementedError If ``kind`` is different from model or data Notes ----- *Data IRLS* solves the following optimization problem for the operator :math:`\mathbf{Op}` and the data :math:`\mathbf{y}`: .. math:: J = \|\mathbf{y} - \mathbf{Op}\,\mathbf{x}\|_1 by a set of outer iterations which require to repeatedly solve a weighted least squares problem of the form: .. math:: \DeclareMathOperator*{\argmin}{arg\,min} \mathbf{x}^{(i+1)} = \argmin_\mathbf{x} \|\mathbf{y} - \mathbf{Op}\,\mathbf{x}\|_{2, \mathbf{R}^{(i)}}^2 + \epsilon_\mathbf{I}^2 \|\mathbf{x}\|_2^2 where :math:`\mathbf{R}^{(i)}` is a diagonal weight matrix whose diagonal elements at iteration :math:`i` are equal to the absolute inverses of the residual vector :math:`\mathbf{r}^{(i)} = \mathbf{y} - \mathbf{Op}\,\mathbf{x}^{(i)}` at iteration :math:`i`. More specifically the :math:`j`-th element of the diagonal of :math:`\mathbf{R}^{(i)}` is .. math:: R^{(i)}_{j,j} = \frac{1}{\left| r^{(i)}_j \right| + \epsilon_\mathbf{R}} or .. math:: R^{(i)}_{j,j} = \frac{1}{\max\{\left|r^{(i)}_j\right|, \epsilon_\mathbf{R}\}} depending on the choice ``threshR``. In either case, :math:`\epsilon_\mathbf{R}` is the user-defined stabilization/thresholding factor [1]_. Similarly *model IRLS* solves the following optimization problem for the operator :math:`\mathbf{Op}` and the data :math:`\mathbf{y}`: .. math:: J = \|\mathbf{x}\|_1 \quad \text{subject to} \quad \mathbf{y} = \mathbf{Op}\,\mathbf{x} by a set of outer iterations which require to repeatedly solve a weighted least squares problem of the form [2]_: .. math:: \mathbf{x}^{(i+1)} = \operatorname*{arg\,min}_\mathbf{x} \|\mathbf{x}\|_{2, \mathbf{R}^{(i)}}^2 \quad \text{subject to} \quad \mathbf{y} = \mathbf{Op}\,\mathbf{x} where :math:`\mathbf{R}^{(i)}` is a diagonal weight matrix whose diagonal elements at iteration :math:`i` are equal to the absolutes of the model vector :math:`\mathbf{x}^{(i)}` at iteration :math:`i`. More specifically the :math:`j`-th element of the diagonal of :math:`\mathbf{R}^{(i)}` is .. math:: R^{(i)}_{j,j} = \left|x^{(i)}_j\right|. .. [1] https://en.wikipedia.org/wiki/Iteratively_reweighted_least_squares .. [2] Chartrand, R., and Yin, W. "Iteratively reweighted algorithms for compressive sensing", IEEE. 2008. """ def _print_setup(self, xcomplex: bool = False) -> None: self._print_solver(f" ({self.kind})") strpar = f"threshR = {self.threshR}\tepsR = {self.epsR}\tepsI = {self.epsI}" if self.nouter is not None: strpar1 = f"tolIRL = {self.nouter}\tnouter = {self.nouter}" else: strpar1 = f"tolIRL = {self.nouter}" print(strpar) print(strpar1) print("-" * 80) if not xcomplex: head1 = " Itn x[0] r2norm" else: head1 = " Itn x[0] r2norm" print(head1) def _print_step(self, x: NDArray) -> None: strx = f"{x[0]:1.2e} " if np.iscomplexobj(x) else f"{x[0]:11.4e}" str1 = f"{self.iiter:6g} " + strx str2 = f" {self.rnorm:10.3e}" print(str1 + str2) def setup( self, y: NDArray, nouter: Optional[int] = None, threshR: bool = False, epsR: float = 1e-10, epsI: float = 1e-10, tolIRLS: float = 1e-10, warm: bool = False, kind: str = "data", show: bool = False, ) -> None: r"""Setup solver Parameters ---------- y : :obj:`np.ndarray` Data of size :math:`[N \times 1]` nouter : :obj:`int`, optional Number of outer iterations threshR : :obj:`bool`, optional Apply thresholding in creation of weight (``True``) or damping (``False``) epsR : :obj:`float`, optional Damping to be applied to residuals for weighting term epsI : :obj:`float`, optional Tikhonov damping (for ``kind="data"``) or L1 model damping (for ``kind="datamodel"``) tolIRLS : :obj:`float`, optional Tolerance. Stop outer iterations if difference between inverted model at subsequent iterations is smaller than ``tolIRLS`` warm : :obj:`bool`, optional Warm start each inversion inner step with previous estimate (``True``) or not (``False``). This only applies to ``kind="data"`` and ``kind="datamodel"`` kind : :obj:`str`, optional Kind of solver (``model``, ``data`` or ``datamodel``) show : :obj:`bool`, optional Display setup log """ self.y = y self.nouter = nouter self.threshR = threshR self.epsR = epsR self.epsI = epsI self.tolIRLS = tolIRLS self.warm = warm self.kind = kind self.ncp = get_array_module(y) self.iiter = 0 # choose step to use if self.kind == "data": self._step = self._step_data elif self.kind == "model": self._step = self._step_model self.Iop = Identity(y.size, dtype=y.dtype) elif self.kind == "datamodel": self._step = self._step_data # augment Op and y self.Op = VStack([self.Op, epsI * Identity(self.Op.shape[1])]) self.epsI = 0.0 # as epsI is added to the augmented system already self.y = np.hstack([self.y, np.zeros(self.Op.shape[1])]) else: raise NotImplementedError("kind must be model, data or datamodel") # print setup if show: self._print_setup() def _step_data(self, x: NDArray, **kwargs_solver) -> NDArray: r"""Run one step of solver with L1 data term""" if self.iiter == 0: x = regularized_inversion( self.Op, self.y, None, x0=x if self.warm else None, damp=self.epsI, **kwargs_solver, )[0] else: # other iterations (weighted least-squares) if self.threshR: self.rw = 1.0 / self.ncp.maximum(self.ncp.abs(self.r), self.epsR) else: self.rw = 1.0 / (self.ncp.abs(self.r) + self.epsR) self.rw = self.rw / self.rw.max() R = Diagonal(np.sqrt(self.rw)) x = regularized_inversion( self.Op, self.y, None, Weight=R, x0=x if self.warm else None, damp=self.epsI, **kwargs_solver, )[0] return x def _step_model(self, x: NDArray, **kwargs_solver) -> NDArray: r"""Run one step of solver with L1 model term""" if self.iiter == 0: # first iteration (unweighted least-squares) if self.ncp == np: x = self.Op.rmatvec( lsqr( self.Op @ self.Op.H + (self.epsI**2) * self.Iop, self.y, **kwargs_solver, )[0] ) else: x = self.Op.rmatvec( cgls( self.Op @ self.Op.H + (self.epsI**2) * self.Iop, self.y, self.ncp.zeros(int(self.Op.shape[0]), dtype=self.Op.dtype), **kwargs_solver, )[0] ) else: # other iterations (weighted least-squares) self.rw = np.abs(x) self.rw = self.rw / self.rw.max() R = Diagonal(self.rw, dtype=self.rw.dtype) if self.ncp == np: x = R.matvec( self.Op.rmatvec( lsqr( self.Op @ R @ self.Op.H + self.epsI**2 * self.Iop, self.y, **kwargs_solver, )[0] ) ) else: x = R.matvec( self.Op.rmatvec( cgls( self.Op @ R @ self.Op.H + self.epsI**2 * self.Iop, self.y, self.ncp.zeros(int(self.Op.shape[0]), dtype=self.Op.dtype), **kwargs_solver, )[0] ) ) return x def step(self, x: NDArray, show: bool = False, **kwargs_solver) -> NDArray: r"""Run one step of solver Parameters ---------- x : :obj:`np.ndarray` Current model vector to be updated by a step of ISTA show : :obj:`bool`, optional Display iteration log **kwargs_solver Arbitrary keyword arguments for :py:func:`scipy.sparse.linalg.cg` solver for data IRLS and :py:func:`scipy.sparse.linalg.lsqr` solver for model IRLS when using numpy data(or :py:func:`pylops.optimization.solver.cg` and :py:func:`pylops.optimization.solver.cgls` when using cupy data) Returns ------- x : :obj:`np.ndarray` Updated model vector """ # update model x = self._step(x, **kwargs_solver) # compute residual self.r: NDArray = self.y - self.Op.matvec(x) self.rnorm = self.ncp.linalg.norm(self.r) self.iiter += 1 if show: self._print_step(x) return x def run( self, x: NDArray, nouter: int = 10, show: bool = False, itershow: Tuple[int, int, int] = (10, 10, 10), **kwargs_solver, ) -> NDArray: r"""Run solver Parameters ---------- x : :obj:`np.ndarray` Current model vector to be updated by multiple steps of IRLS nouter : :obj:`int`, optional Number of outer iterations. show : :obj:`bool`, optional Display logs itershow : :obj:`tuple`, optional Display set log for the first N1 steps, last N2 steps, and every N3 steps in between where N1, N2, N3 are the three element of the list. **kwargs_solver Arbitrary keyword arguments for :py:func:`scipy.sparse.linalg.cg` solver for data IRLS and :py:func:`scipy.sparse.linalg.lsqr` solver for model IRLS when using numpy data(or :py:func:`pylops.optimization.solver.cg` and :py:func:`pylops.optimization.solver.cgls` when using cupy data) Returns ------- x : :obj:`np.ndarray` Estimated model of size :math:`[M \times 1]` """ nouter = nouter if self.nouter is None else self.nouter if x is not None: self.x0 = x.copy() self.y = self.y - self.Op.matvec(x) # choose xold to ensure tolerance test is passed initially xold = x.copy() + np.inf while self.iiter < nouter and self.ncp.linalg.norm(x - xold) >= self.tolIRLS: showstep = ( True if show and ( self.iiter < itershow[0] or nouter - self.iiter < itershow[1] or self.iiter % itershow[2] == 0 ) else False ) xold = x.copy() x = self.step(x, showstep, **kwargs_solver) self.callback(x) # adding initial guess if hasattr(self, "x0"): x = self.x0 + x return x def finalize(self, show: bool = False) -> None: r"""Finalize solver Parameters ---------- show : :obj:`bool`, optional Display finalize log """ self.tend = time.time() self.telapsed = self.tend - self.tstart self.nouter = self.iiter if show: self._print_finalize() def solve( self, y: NDArray, x0: Optional[NDArray] = None, nouter: int = 10, threshR: bool = False, epsR: float = 1e-10, epsI: float = 1e-10, tolIRLS: float = 1e-10, kind: str = "data", warm: bool = False, show: bool = False, itershow: Tuple[int, int, int] = (10, 10, 10), **kwargs_solver, ) -> NDArray: r"""Run entire solver Parameters ---------- y : :obj:`np.ndarray` Data of size :math:`[N \times 1]` x0 : :obj:`np.ndarray`, optional Initial guess of size :math:`[N \times 1]`. If ``None``, initialize internally as zero vector nouter : :obj:`int`, optional Number of outer iterations threshR : :obj:`bool`, optional Apply thresholding in creation of weight (``True``) or damping (``False``) epsR : :obj:`float`, optional Damping to be applied to residuals for weighting term epsI : :obj:`float`, optional Tikhonov damping tolIRLS : :obj:`float`, optional Tolerance. Stop outer iterations if difference between inverted model at subsequent iterations is smaller than ``tolIRLS`` warm : :obj:`bool`, optional Warm start each inversion inner step with previous estimate (``True``) or not (``False``). This only applies to ``kind="data"`` and ``kind="datamodel"`` kind : :obj:`str`, optional Kind of solver (``data`` or ``model``) show : :obj:`bool`, optional Display setup log itershow : :obj:`tuple`, optional Display set log for the first N1 steps, last N2 steps, and every N3 steps in between where N1, N2, N3 are the three element of the list. **kwargs_solver Arbitrary keyword arguments for :py:func:`scipy.sparse.linalg.cg` solver for data IRLS and :py:func:`scipy.sparse.linalg.lsqr` solver for model IRLS when using numpy data(or :py:func:`pylops.optimization.solver.cg` and :py:func:`pylops.optimization.solver.cgls` when using cupy data) Returns ------- x : :obj:`np.ndarray` Estimated model of size :math:`[N \times 1]` """ self.setup( y=y, threshR=threshR, epsR=epsR, epsI=epsI, tolIRLS=tolIRLS, warm=warm, kind=kind, show=show, ) if x0 is None: x0 = self.ncp.zeros(self.Op.shape[1], dtype=self.y.dtype) x = self.run(x0, nouter=nouter, show=show, itershow=itershow, **kwargs_solver) self.finalize(show) return x, self.nouter
[docs]class OMP(Solver): r"""Orthogonal Matching Pursuit (OMP). Solve an optimization problem with :math:`L_0` regularization function given the operator ``Op`` and data ``y``. The operator can be real or complex, and should ideally be either square :math:`N=M` or underdetermined :math:`N<M`. Parameters ---------- Op : :obj:`pylops.LinearOperator` Operator to invert See Also -------- ISTA: Iterative Shrinkage-Thresholding Algorithm (ISTA). FISTA: Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). SPGL1: Spectral Projected-Gradient for L1 norm (SPGL1). SplitBregman: Split Bregman for mixed L2-L1 norms. Notes ----- Solves the following optimization problem for the operator :math:`\mathbf{Op}` and the data :math:`\mathbf{y}`: .. math:: \|\mathbf{x}\|_0 \quad \text{subject to} \quad \|\mathbf{Op}\,\mathbf{x}-\mathbf{y}\|_2^2 \leq \sigma^2, using Orthogonal Matching Pursuit (OMP). This is a very simple iterative algorithm which applies the following step: .. math:: \DeclareMathOperator*{\argmin}{arg\,min} \DeclareMathOperator*{\argmax}{arg\,max} \Lambda_k = \Lambda_{k-1} \cup \left\{\argmax_j \left|\mathbf{Op}_j^H\,\mathbf{r}_k\right| \right\} \\ \mathbf{x}_k = \argmin_{\mathbf{x}} \left\|\mathbf{Op}_{\Lambda_k}\,\mathbf{x} - \mathbf{y}\right\|_2^2 Note that by choosing ``niter_inner=0`` the basic Matching Pursuit (MP) algorithm is implemented instead. In other words, instead of solving an optimization at each iteration to find the best :math:`\mathbf{x}` for the currently selected basis functions, the vector :math:`\mathbf{x}` is just updated at the new basis function by taking directly the value from the inner product :math:`\mathbf{Op}_j^H\,\mathbf{r}_k`. In this case it is highly recommended to provide a normalized basis function. If different basis have different norms, the solver is likely to diverge. Similar observations apply to OMP, even though mild unbalancing between the basis is generally properly handled. """ def _print_setup(self, xcomplex: bool = False) -> None: self._print_solver("(Only MP)" if self.niter_inner == 0 else "", nbar=55) strpar = ( f"sigma = {self.sigma:.2e}\tniter_outer = {self.niter_outer}\n" f"niter_inner = {self.niter_inner}\tnormalization={self.normalizecols}" ) print(strpar) print("-" * 55) if not xcomplex: head1 = " Itn x[0] r2norm" else: head1 = " Itn x[0] r2norm" print(head1) def _print_step(self, x: NDArray) -> None: strx = f"{x[0]:1.2e} " if np.iscomplexobj(x) else f"{x[0]:11.4e}" str1 = f"{self.iiter:6g} " + strx str2 = f" {self.cost[-1]:10.3e}" print(str1 + str2) def setup( self, y: NDArray, niter_outer: int = 10, niter_inner: int = 40, sigma: float = 1e-4, normalizecols: bool = False, show: bool = False, ) -> None: r"""Setup solver Parameters ---------- y : :obj:`np.ndarray` Data of size :math:`[N \times 1]` niter_outer : :obj:`int`, optional Number of iterations of outer loop niter_inner : :obj:`int`, optional Number of iterations of inner loop. By choosing ``niter_inner=0``, the Matching Pursuit (MP) algorithm is implemented. sigma : :obj:`list` Maximum :math:`L^2` norm of residual. When smaller stop iterations. normalizecols : :obj:`list`, optional Normalize columns (``True``) or not (``False``). Note that this can be expensive as it requires applying the forward operator :math:`n_{cols}` times to unit vectors (i.e., containing 1 at position j and zero otherwise); use only when the columns of the operator are expected to have highly varying norms. show : :obj:`bool`, optional Display setup log """ self.y = y self.niter_outer = niter_outer self.niter_inner = niter_inner self.sigma = sigma self.normalizecols = normalizecols self.ncp = get_array_module(y) # find normalization factor for each column if self.normalizecols: ncols = self.Op.shape[1] self.norms = self.ncp.zeros(ncols) for icol in range(ncols): unit = self.ncp.zeros(ncols, dtype=self.Op.dtype) unit[icol] = 1 self.norms[icol] = np.linalg.norm(self.Op.matvec(unit)) # create variables to track the residual norm and iterations self.res = self.y.copy() self.cost = [ float(np.linalg.norm(self.y)), ] self.iiter = 0 if show: self._print_setup() def step( self, x: NDArray, cols: InputDimsLike, show: bool = False, ) -> NDArray: r"""Run one step of solver Parameters ---------- x : :obj:`list` or :obj:`np.ndarray` Current model vector to be updated by a step of OMP cols : :obj:`list` Current list of chosen elements of vector x to be updated by a step of OMP show : :obj:`bool`, optional Display iteration log Returns ------- x : :obj:`np.ndarray` Updated model vector cols : :obj:`list` Current list of chosen elements """ # compute inner products cres = self.Op.rmatvec(self.res) cres_abs = np.abs(cres) if self.normalizecols: cres_abs = cres_abs / self.norms # choose column with max cres cres_max = np.max(cres_abs) imax = np.argwhere(cres_abs == cres_max).ravel() nimax = len(imax) if nimax > 0: imax = imax[np.random.permutation(nimax)[0]] else: imax = imax[0] # update active set if imax not in cols: addnew = True cols.append(int(imax)) else: addnew = False imax_in_cols = cols.index(imax) # estimate model for current set of columns if self.niter_inner == 0: # MP update Opcol = self.Op.apply_columns( [ int(imax), ] ) self.res -= Opcol.matvec(cres[imax] * self.ncp.ones(1)) if addnew: x.append(cres[imax]) else: x[imax_in_cols] += cres[imax] else: # OMP update Opcol = self.Op.apply_columns(cols) if self.ncp == np: x = lsqr(Opcol, self.y, iter_lim=self.niter_inner)[0] else: x = cgls( Opcol, self.y, self.ncp.zeros(int(Opcol.shape[1]), dtype=Opcol.dtype), niter=self.niter_inner, )[0] self.res = self.y - Opcol.matvec(x) self.iiter += 1 self.cost.append(float(np.linalg.norm(self.res))) if show: self._print_step(x) return x, cols def run( self, x: NDArray, cols: InputDimsLike, show: bool = False, itershow: Tuple[int, int, int] = (10, 10, 10), ) -> Tuple[NDArray, InputDimsLike]: r"""Run solver Parameters ---------- x : :obj:`np.ndarray` Current model vector to be updated by multiple steps of IRLS cols : :obj:`list` Current list of chosen elements of vector x to be updated by a step of OMP show : :obj:`bool`, optional Display logs itershow : :obj:`tuple`, optional Display set log for the first N1 steps, last N2 steps, and every N3 steps in between where N1, N2, N3 are the three element of the list. Returns ------- x : :obj:`np.ndarray` Estimated model of size :math:`[M \times 1]` cols : :obj:`list` Current list of chosen elements """ while self.iiter < self.niter_outer and self.cost[self.iiter] > self.sigma: showstep = ( True if show and ( self.iiter < itershow[0] or self.niter_outer - self.iiter < itershow[1] or self.iiter % itershow[2] == 0 ) else False ) x, cols = self.step(x, cols, showstep) self.callback(x) return x, cols def finalize( self, x: NDArray, cols: InputDimsLike, show: bool = False, ) -> NDArray: r"""Finalize solver Parameters ---------- x : :obj:`list` or :obj:`np.ndarray` Current model vector to be updated by a step of OMP cols : :obj:`list` Current list of chosen elements of vector x to be updated by a step of OMP show : :obj:`bool`, optional Display finalize log Returns ------- xfin : :obj:`np.ndarray` Estimated model of size :math:`[M \times 1]` """ self.tend = time.time() self.telapsed = self.tend - self.tstart self.cost = np.array(self.cost) self.nouter = self.iiter xfin = self.ncp.zeros(int(self.Op.shape[1]), dtype=self.Op.dtype) xfin[cols] = self.ncp.array(x) if show: self._print_finalize(nbar=55) return xfin def solve( self, y: NDArray, niter_outer: int = 10, niter_inner: int = 40, sigma: float = 1e-4, normalizecols: bool = False, show: bool = False, itershow: Tuple[int, int, int] = (10, 10, 10), ) -> Tuple[NDArray, int, NDArray]: r"""Run entire solver Parameters ---------- y : :obj:`np.ndarray` Data of size :math:`[N \times 1]` niter_outer : :obj:`int`, optional Number of iterations of outer loop niter_inner : :obj:`int`, optional Number of iterations of inner loop. By choosing ``niter_inner=0``, the Matching Pursuit (MP) algorithm is implemented. sigma : :obj:`list` Maximum :math:`L^2` norm of residual. When smaller stop iterations. normalizecols : :obj:`list`, optional Normalize columns (``True``) or not (``False``). Note that this can be expensive as it requires applying the forward operator :math:`n_{cols}` times to unit vectors (i.e., containing 1 at position j and zero otherwise); use only when the columns of the operator are expected to have highly varying norms. show : :obj:`bool`, optional Display logs itershow : :obj:`tuple`, optional Display set log for the first N1 steps, last N2 steps, and every N3 steps in between where N1, N2, N3 are the three element of the list. Returns ------- x : :obj:`np.ndarray` Estimated model of size :math:`[M \times 1]` niter_outer : :obj:`int` Number of effective outer iterations cost : :obj:`numpy.ndarray`, optional History of cost function """ self.setup( y, niter_outer=niter_outer, niter_inner=niter_inner, sigma=sigma, normalizecols=normalizecols, show=show, ) x: List[NDArray] = [] cols: List[InputDimsLike] = [] x, cols = self.run(x, cols, show=show, itershow=itershow) x = self.finalize(x, cols, show) return x, self.nouter, self.cost
[docs]class ISTA(Solver): r"""Iterative Shrinkage-Thresholding Algorithm (ISTA). Solve an optimization problem with :math:`L_p, \; p=0, 0.5, 1` regularization, given the operator ``Op`` and data ``y``. The operator can be real or complex, and should ideally be either square :math:`N=M` or underdetermined :math:`N<M`. Parameters ---------- Op : :obj:`pylops.LinearOperator` Operator to invert Raises ------ NotImplementedError If ``threshkind`` is different from hard, soft, half, soft-percentile, or half-percentile ValueError If ``perc=None`` when ``threshkind`` is soft-percentile or half-percentile ValueError If ``monitorres=True`` and residual increases See Also -------- OMP: Orthogonal Matching Pursuit (OMP). FISTA: Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). SPGL1: Spectral Projected-Gradient for L1 norm (SPGL1). SplitBregman: Split Bregman for mixed L2-L1 norms. Notes ----- Solves the following synthesis problem for the operator :math:`\mathbf{Op}` and the data :math:`\mathbf{y}`: .. math:: J = \|\mathbf{y} - \mathbf{Op}\,\mathbf{x}\|_2^2 + \epsilon \|\mathbf{x}\|_p or the analysis problem: .. math:: J = \|\mathbf{y} - \mathbf{Op}\,\mathbf{x}\|_2^2 + \epsilon \|\mathbf{SOp}^H\,\mathbf{x}\|_p if ``SOp`` is provided. Note that in the first case, ``SOp`` should be assimilated in the modelling operator (i.e., ``Op=GOp * SOp``). The Iterative Shrinkage-Thresholding Algorithms (ISTA) [1]_ is used, where :math:`p=0, 0.5, 1`. This is a very simple iterative algorithm which applies the following step: .. math:: \mathbf{x}^{(i+1)} = T_{(\epsilon \alpha /2, p)} \left(\mathbf{x}^{(i)} + \alpha\,\mathbf{Op}^H \left(\mathbf{y} - \mathbf{Op}\,\mathbf{x}^{(i)}\right)\right) or .. math:: \mathbf{x}^{(i+1)} = \mathbf{SOp}\,\left\{T_{(\epsilon \alpha /2, p)} \mathbf{SOp}^H\,\left(\mathbf{x}^{(i)} + \alpha\,\mathbf{Op}^H \left(\mathbf{y} - \mathbf{Op} \,\mathbf{x}^{(i)}\right)\right)\right\} where :math:`\epsilon \alpha /2` is the threshold and :math:`T_{(\tau, p)}` is the thresholding rule. The most common variant of ISTA uses the so-called soft-thresholding rule :math:`T(\tau, p=1)`. Alternatively an hard-thresholding rule is used in the case of :math:`p=0` or a half-thresholding rule is used in the case of :math:`p=1/2`. Finally, percentile bases thresholds are also implemented: the damping factor is not used anymore an the threshold changes at every iteration based on the computed percentile. .. [1] Daubechies, I., Defrise, M., and De Mol, C., “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint”, Communications on pure and applied mathematics, vol. 57, pp. 1413-1457. 2004. """ def _print_setup(self) -> None: self._print_solver(f" ({self.threshkind} thresholding)") if self.niter is not None: strpar = f"eps = {self.eps:10e}\ttol = {self.tol:10e}\tniter = {self.niter}" else: strpar = f"eps = {self.eps:10e}\ttol = {self.tol:10e}" if self.perc is None: strpar1 = f"alpha = {self.alpha:10e}\tthresh = {self.thresh:10e}" else: strpar1 = f"alpha = {self.alpha:10e}\tperc = {self.perc:.1f}" head1 = " Itn x[0] r2norm r12norm xupdate" print(strpar) print(strpar1) print("-" * 80) print(head1) def _print_step( self, x: NDArray, costdata: float, costreg: float, xupdate: float, ) -> None: strx = ( f" {x[0]:1.2e} " if np.iscomplexobj(x) else f" {x[0]:11.4e} " ) msg = ( f"{self.iiter:6g} " + strx + f"{costdata:10.3e} {costdata + costreg:9.3e} {xupdate:10.3e}" ) print(msg) def setup( self, y: NDArray, x0: Optional[NDArray] = None, niter: Optional[int] = None, SOp: Optional[LinearOperator] = None, eps: float = 0.1, alpha: Optional[float] = None, eigsdict: Optional[Dict[str, Any]] = None, tol: float = 1e-10, threshkind: str = "soft", perc: Optional[float] = None, decay: Optional[NDArray] = None, monitorres: bool = False, show: bool = False, ) -> NDArray: r"""Setup solver Parameters ---------- y : :obj:`np.ndarray` Data of size :math:`[N \times 1]` or :math:`[N \times R]` where a solution for multiple right-hand-side is found when ``R>1``. x0: :obj:`numpy.ndarray`, optional Initial guess niter : :obj:`int` Number of iterations SOp : :obj:`pylops.LinearOperator`, optional Regularization operator (use when solving the analysis problem) eps : :obj:`float`, optional Sparsity damping alpha : :obj:`float`, optional Step size. To guarantee convergence, ensure :math:`\alpha \le 1/\lambda_\text{max}`, where :math:`\lambda_\text{max}` is the largest eigenvalue of :math:`\mathbf{Op}^H\mathbf{Op}`. If ``None``, the maximum eigenvalue is estimated and the optimal step size is chosen as :math:`1/\lambda_\text{max}`. If provided, the convergence criterion will not be checked internally. eigsdict : :obj:`dict`, optional Dictionary of parameters to be passed to :func:`pylops.LinearOperator.eigs` method when computing the maximum eigenvalue tol : :obj:`float`, optional Tolerance. Stop iterations if difference between inverted model at subsequent iterations is smaller than ``tol`` threshkind : :obj:`str`, optional Kind of thresholding ('hard', 'soft', 'half', 'hard-percentile', 'soft-percentile', or 'half-percentile' - 'soft' used as default) perc : :obj:`float`, optional Percentile, as percentage of values to be kept by thresholding (to be provided when thresholding is soft-percentile or half-percentile) decay : :obj:`numpy.ndarray`, optional Decay factor to be applied to thresholding during iterations monitorres : :obj:`bool`, optional Monitor that residual is decreasing show : :obj:`bool`, optional Display setup log Returns ------- x : :obj:`np.ndarray` Initial model vector """ self.y = y self.SOp = SOp self.niter = niter self.eps = eps self.eigsdict = {} if eigsdict is None else eigsdict self.tol = tol self.threshkind = threshkind self.perc = perc self.decay = decay self.monitorres = monitorres self.ncp = get_array_module(y) # choose matvec/rmatvec or matmat/rmatmat based on R if y.ndim > 1 and y.shape[1] > 1: self.Opmatvec = self.Op.matmat self.Oprmatvec = self.Op.rmatmat if self.SOp is not None: self.SOpmatvec = self.SOp.matmat self.SOprmatvec = self.SOp.rmatmat else: self.Opmatvec = self.Op.matvec self.Oprmatvec = self.Op.rmatvec if self.SOp is not None: self.SOpmatvec = self.SOp.matvec self.SOprmatvec = self.SOp.rmatvec # choose thresholding function if threshkind not in [ "hard", "soft", "half", "hard-percentile", "soft-percentile", "half-percentile", ]: raise NotImplementedError( "threshkind should be hard, soft, half," "hard-percentile, soft-percentile, " "or half-percentile" ) if ( threshkind in ["hard-percentile", "soft-percentile", "half-percentile"] and perc is None ): raise ValueError( "Provide a percentile when choosing hard-percentile," "soft-percentile, or half-percentile thresholding" ) self.threshf: Callable[[NDArray, float], NDArray] if threshkind == "soft": self.threshf = _softthreshold elif threshkind == "hard": self.threshf = _hardthreshold elif threshkind == "half": self.threshf = _halfthreshold elif threshkind == "hard-percentile": self.threshf = _hardthreshold_percentile elif threshkind == "soft-percentile": self.threshf = _softthreshold_percentile else: self.threshf = _halfthreshold_percentile # prepare decay (if not passed) if perc is None and decay is None: self.decay = self.ncp.ones(niter) # step size if alpha is not None: self.alpha = alpha elif not hasattr(self, "alpha"): # compute largest eigenvalues of Op^H * Op Op1 = self.Op.H @ self.Op if get_module_name(self.ncp) == "numpy": maxeig: float = np.abs( Op1.eigs( neigs=1, symmetric=True, **self.eigsdict, )[0] ) else: maxeig = np.abs( power_iteration( Op1, dtype=Op1.dtype, backend="cupy", **self.eigsdict, )[0] ) self.alpha = 1.0 / maxeig # define threshold self.thresh = eps * self.alpha * 0.5 # initialize model and cost function if x0 is None: if y.ndim == 1: x = self.ncp.zeros(int(self.Op.shape[1]), dtype=self.Op.dtype) else: x = self.ncp.zeros( (int(self.Op.shape[1]), y.shape[1]), dtype=self.Op.dtype ) else: if y.ndim != x0.ndim: # error for wrong dimensions raise ValueError("Number of columns of x0 and data are not the same") elif x0.shape[0] != self.Op.shape[1]: # error for wrong dimensions raise ValueError("Operator and input vector have different dimensions") else: x = x0.copy() # create variable to track residual if monitorres: self.normresold = np.inf # for fista self.t = 1.0 # create variables to track the residual norm and iterations self.cost: List[float] = [] self.iiter = 0 # print setup if show: self._print_setup() return x def step(self, x: NDArray, show: bool = False) -> Tuple[NDArray, float]: r"""Run one step of solver Parameters ---------- x : :obj:`np.ndarray` Current model vector to be updated by a step of ISTA show : :obj:`bool`, optional Display iteration log Returns ------- x : :obj:`np.ndarray` Updated model vector xupdate : :obj:`float` Norm of the update """ # store old vector xold = x.copy() # compute residual res: NDArray = self.y - self.Opmatvec(x) if self.monitorres: self.normres = np.linalg.norm(res) if self.normres > self.normresold: raise ValueError( f"ISTA stopped at iteration {self.iiter} due to " "residual increasing, consider modifying " "eps and/or alpha..." ) else: self.normresold = self.normres # compute gradient grad: NDArray = self.alpha * (self.Oprmatvec(res)) # update inverted model x_unthesh: NDArray = x + grad if self.SOp is not None: x_unthesh = self.SOprmatvec(x_unthesh) if self.perc is None and self.decay is not None: x = self.threshf(x_unthesh, self.decay[self.iiter] * self.thresh) elif self.perc is not None: x = self.threshf(x_unthesh, 100 - self.perc) if self.SOp is not None: x = self.SOpmatvec(x) # model update xupdate = np.linalg.norm(x - xold) costdata = 0.5 * np.linalg.norm(res) ** 2 costreg = self.eps * np.linalg.norm(x, ord=1) self.cost.append(float(costdata + costreg)) self.iiter += 1 if show: self._print_step(x, costdata, costreg, xupdate) return x, xupdate def run( self, x: NDArray, niter: Optional[int] = None, show: bool = False, itershow: Tuple[int, int, int] = (10, 10, 10), ) -> NDArray: r"""Run solver Parameters ---------- x : :obj:`np.ndarray` Current model vector to be updated by multiple steps of CG niter : :obj:`int`, optional Number of iterations. Can be set to ``None`` if already provided in the setup call show : :obj:`bool`, optional Display logs itershow : :obj:`tuple`, optional Display set log for the first N1 steps, last N2 steps, and every N3 steps in between where N1, N2, N3 are the three element of the list. Returns ------- x : :obj:`np.ndarray` Estimated model of size :math:`[M \times 1]` """ xupdate = np.inf niter = self.niter if niter is None else niter if niter is None: raise ValueError("niter must not be None") while self.iiter < niter and xupdate > self.tol: showstep = ( True if show and ( self.iiter < itershow[0] or niter - self.iiter < itershow[1] or self.iiter % itershow[2] == 0 ) else False ) x, xupdate = self.step(x, showstep) self.callback(x) if xupdate <= self.tol: logging.warning( "update smaller that tolerance for " "iteration %d", self.iiter ) return x def finalize(self, show: bool = False) -> None: r"""Finalize solver Parameters ---------- show : :obj:`bool`, optional Display finalize log """ self.tend = time.time() self.telapsed = self.tend - self.tstart self.cost = np.array(self.cost) if show: self._print_finalize() def solve( self, y: NDArray, x0: Optional[NDArray] = None, niter: Optional[int] = None, SOp: Optional[LinearOperator] = None, eps: float = 0.1, alpha: Optional[float] = None, eigsdict: Optional[Dict[str, Any]] = None, tol: float = 1e-10, threshkind: str = "soft", perc: Optional[float] = None, decay: Optional[NDArray] = None, monitorres: bool = False, show: bool = False, itershow: Tuple[int, int, int] = (10, 10, 10), ) -> Tuple[NDArray, int, NDArray]: r"""Run entire solver Parameters ---------- y : :obj:`np.ndarray` Data of size :math:`[N \times 1]` x0: :obj:`numpy.ndarray`, optional Initial guess niter : :obj:`int` Number of iterations SOp : :obj:`pylops.LinearOperator`, optional Regularization operator (use when solving the analysis problem) eps : :obj:`float`, optional Sparsity damping alpha : :obj:`float`, optional Step size. To guarantee convergence, ensure :math:`\alpha \le 1/\lambda_\text{max}`, where :math:`\lambda_\text{max}` is the largest eigenvalue of :math:`\mathbf{Op}^H\mathbf{Op}`. If ``None``, the maximum eigenvalue is estimated and the optimal step size is chosen as :math:`1/\lambda_\text{max}`. If provided, the convergence criterion will not be checked internally. eigsdict : :obj:`dict`, optional Dictionary of parameters to be passed to :func:`pylops.LinearOperator.eigs` method when computing the maximum eigenvalue tol : :obj:`float`, optional Tolerance. Stop iterations if difference between inverted model at subsequent iterations is smaller than ``tol`` threshkind : :obj:`str`, optional Kind of thresholding ('hard', 'soft', 'half', 'hard-percentile', 'soft-percentile', or 'half-percentile' - 'soft' used as default) perc : :obj:`float`, optional Percentile, as percentage of values to be kept by thresholding (to be provided when thresholding is soft-percentile or half-percentile) decay : :obj:`numpy.ndarray`, optional Decay factor to be applied to thresholding during iterations monitorres : :obj:`bool`, optional Monitor that residual is decreasing show : :obj:`bool`, optional Display logs itershow : :obj:`tuple`, optional Display set log for the first N1 steps, last N2 steps, and every N3 steps in between where N1, N2, N3 are the three element of the list. Returns ------- x : :obj:`np.ndarray` Estimated model of size :math:`[M \times 1]` niter : :obj:`int` Number of effective iterations cost : :obj:`numpy.ndarray`, optional History of cost function """ x = self.setup( y=y, x0=x0, niter=niter, SOp=SOp, eps=eps, alpha=alpha, eigsdict=eigsdict, tol=tol, threshkind=threshkind, perc=perc, decay=decay, monitorres=monitorres, show=show, ) x = self.run(x, niter, show=show, itershow=itershow) self.finalize(show) return x, self.iiter, self.cost
[docs]class FISTA(ISTA): r"""Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). Solve an optimization problem with :math:`L_p, \; p=0, 0.5, 1` regularization, given the operator ``Op`` and data ``y``. The operator can be real or complex, and should ideally be either square :math:`N=M` or underdetermined :math:`N<M`. Parameters ---------- Op : :obj:`pylops.LinearOperator` Operator to invert Raises ------ NotImplementedError If ``threshkind`` is different from hard, soft, half, soft-percentile, or half-percentile ValueError If ``perc=None`` when ``threshkind`` is soft-percentile or half-percentile See Also -------- OMP: Orthogonal Matching Pursuit (OMP). ISTA: Iterative Shrinkage-Thresholding Algorithm (ISTA). SPGL1: Spectral Projected-Gradient for L1 norm (SPGL1). SplitBregman: Split Bregman for mixed L2-L1 norms. Notes ----- Solves the following synthesis problem for the operator :math:`\mathbf{Op}` and the data :math:`\mathbf{y}`: .. math:: J = \|\mathbf{y} - \mathbf{Op}\,\mathbf{x}\|_2^2 + \epsilon \|\mathbf{x}\|_p or the analysis problem: .. math:: J = \|\mathbf{y} - \mathbf{Op}\,\mathbf{x}\|_2^2 + \epsilon \|\mathbf{SOp}^H\,\mathbf{x}\|_p if ``SOp`` is provided. The Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [1]_ is used, where :math:`p=0, 0.5, 1`. This is a modified version of ISTA solver with improved convergence properties and limited additional computational cost. Similarly to the ISTA solver, the choice of the thresholding algorithm to apply at every iteration is based on the choice of :math:`p`. .. [1] Beck, A., and Teboulle, M., “A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems”, SIAM Journal on Imaging Sciences, vol. 2, pp. 183-202. 2009. """ def step(self, x: NDArray, z: NDArray, show: bool = False) -> NDArray: r"""Run one step of solver Parameters ---------- x : :obj:`np.ndarray` Current model vector to be updated by a step of ISTA z : :obj:`np.ndarray` Current auxiliary model vector to be updated by a step of ISTA show : :obj:`bool`, optional Display iteration log Returns ------- x : :obj:`np.ndarray` Updated model vector z : :obj:`np.ndarray` Updated auxiliary model vector xupdate : :obj:`float` Norm of the update """ # store old vector xold = x.copy() # compute residual resz: NDArray = self.y - self.Opmatvec(z) if self.monitorres: self.normres = np.linalg.norm(resz) if self.normres > self.normresold: raise ValueError( f"ISTA stopped at iteration {self.iiter} due to " "residual increasing, consider modifying " "eps and/or alpha..." ) else: self.normresold = self.normres # compute gradient grad: NDArray = self.alpha * (self.Oprmatvec(resz)) # update inverted model x_unthesh: NDArray = z + grad if self.SOp is not None: x_unthesh = self.SOprmatvec(x_unthesh) if self.perc is None and self.decay is not None: x = self.threshf(x_unthesh, self.decay[self.iiter] * self.thresh) elif self.perc is not None: x = self.threshf(x_unthesh, 100 - self.perc) if self.SOp is not None: x = self.SOpmatvec(x) # update auxiliary coefficients told = self.t self.t = (1.0 + np.sqrt(1.0 + 4.0 * self.t**2)) / 2.0 z = x + ((told - 1.0) / self.t) * (x - xold) # model update xupdate = np.linalg.norm(x - xold) costdata = 0.5 * np.linalg.norm(self.y - self.Op @ x) ** 2 costreg = self.eps * np.linalg.norm(x, ord=1) self.cost.append(float(costdata + costreg)) self.iiter += 1 if show: self._print_step(x, costdata, costreg, xupdate) return x, z, xupdate def run( self, x: NDArray, niter: Optional[int] = None, show: bool = False, itershow: Tuple[int, int, int] = (10, 10, 10), ) -> NDArray: r"""Run solver Parameters ---------- x : :obj:`np.ndarray` Current model vector to be updated by multiple steps of CG niter : :obj:`int`, optional Number of iterations. Can be set to ``None`` if already provided in the setup call show : :obj:`bool`, optional Display logs itershow : :obj:`tuple`, optional Display set log for the first N1 steps, last N2 steps, and every N3 steps in between where N1, N2, N3 are the three element of the list. Returns ------- x : :obj:`np.ndarray` Estimated model of size :math:`[M \times 1]` """ z = x.copy() xupdate = np.inf niter = self.niter if niter is None else niter if niter is None: raise ValueError("niter must not be None") while self.iiter < niter and xupdate > self.tol: showstep = ( True if show and ( self.iiter < itershow[0] or niter - self.iiter < itershow[1] or self.iiter % itershow[2] == 0 ) else False ) x, z, xupdate = self.step(x, z, showstep) self.callback(x) if xupdate <= self.tol: logging.warning( "update smaller that tolerance for " "iteration %d", self.iiter ) return x
[docs]class SPGL1(Solver): r"""Spectral Projected-Gradient for L1 norm. Solve a constrained system of equations given the operator ``Op`` and a sparsyfing transform ``SOp`` aiming to retrive a model that is sparse in the sparsifying domain. This is a simple wrapper to :py:func:`spgl1.spgl1` which is a porting of the well-known `SPGL1 <https://www.cs.ubc.ca/~mpf/spgl1/>`_ MATLAB solver into Python. In order to be able to use this solver you need to have installed the ``spgl1`` library. Parameters ---------- Op : :obj:`pylops.LinearOperator` Operator to invert of size :math:`[N \times M]`. Raises ------ ModuleNotFoundError If the ``spgl1`` library is not installed Notes ----- Solve different variations of sparsity-promoting inverse problem by imposing sparsity in the retrieved model [1]_. The first problem is called *basis pursuit denoise (BPDN)* and its cost function is .. math:: \|\mathbf{x}\|_1 \quad \text{subject to} \quad \left\|\mathbf{Op}\,\mathbf{S}^H\mathbf{x}-\mathbf{y}\right\|_2^2 \leq \sigma, while the second problem is the *ℓ₁-regularized least-squares or LASSO* problem and its cost function is .. math:: \left\|\mathbf{Op}\,\mathbf{S}^H\mathbf{x}-\mathbf{y}\right\|_2^2 \quad \text{subject to} \quad \|\mathbf{x}\|_1 \leq \tau .. [1] van den Berg E., Friedlander M.P., "Probing the Pareto frontier for basis pursuit solutions", SIAM J. on Scientific Computing, vol. 31(2), pp. 890-912. 2008. """ def _print_setup(self, xcomplex: bool = False) -> None: self._print_solver() strprec = f"SOp={self.SOp}" strreg = f"tau={self.tau} sigma={self.sigma}" print(strprec) print(strreg) print("-" * 80) def _print_finalize(self) -> None: print(f"\nTotal time (s) = {self.telapsed:.2f}") print("-" * 80 + "\n") def setup( self, y: NDArray, SOp: Optional[LinearOperator] = None, tau: int = 0, sigma: int = 0, show: bool = False, ) -> None: r"""Setup solver Parameters ---------- y : :obj:`np.ndarray` Data of size :math:`[N \times 1]` SOp : :obj:`pylops.LinearOperator`, optional Sparsifying transform tau : :obj:`float`, optional Non-negative LASSO scalar. If different from ``0``, SPGL1 will solve LASSO problem sigma : :obj:`list`, optional BPDN scalar. If different from ``0``, SPGL1 will solve BPDN problem show : :obj:`bool`, optional Display setup log """ if spgl1_message is not None: raise ModuleNotFoundError(spgl1_message) self.y = y self.SOp = SOp self.tau = tau self.sigma = sigma self.ncp = get_array_module(y) # print setup if show: self._print_setup() def step(self) -> None: raise NotImplementedError( "SPGL1 uses as default the" "spgl1.spgl1 solver, therefore the " "step method is not implemented. Use directly run or solve." ) def run( self, x: NDArray, show: bool = False, **kwargs_spgl1, ) -> Tuple[NDArray, NDArray, Dict[str, Any]]: r"""Run solver Parameters ---------- x : :obj:`np.ndarray` Current model vector to be updated by multiple steps of the solver. If ``None``, x is assumed to be a zero vector show : :obj:`bool`, optional Display iterations log **kwargs_spgl1 Arbitrary keyword arguments for :py:func:`spgl1.spgl1` solver Returns ------- xinv : :obj:`numpy.ndarray` Inverted model in original domain. pinv : :obj:`numpy.ndarray` Inverted model in sparse domain. info : :obj:`dict` Dictionary with the following information: - ``tau``, final value of tau (see sigma above) - ``rnorm``, two-norm of the optimal residual - ``rgap``, relative duality gap (an optimality measure) - ``gnorm``, Lagrange multiplier of (LASSO) - ``stat``, final status of solver * ``1``: found a BPDN solution, * ``2``: found a BP solution; exit based on small gradient, * ``3``: found a BP solution; exit based on small residual, * ``4``: found a LASSO solution, * ``5``: error, too many iterations, * ``6``: error, linesearch failed, * ``7``: error, found suboptimal BP solution, * ``8``: error, too many matrix-vector products. - ``niters``, number of iterations - ``nProdA``, number of multiplications with A - ``nProdAt``, number of multiplications with A' - ``n_newton``, number of Newton steps - ``time_project``, projection time (seconds) - ``time_matprod``, matrix-vector multiplications time (seconds) - ``time_total``, total solution time (seconds) - ``niters_lsqr``, number of lsqr iterations (if ``subspace_min=True``) - ``xnorm1``, L1-norm model solution history through iterations - ``rnorm2``, L2-norm residual history through iterations - ``lambdaa``, Lagrange multiplier history through iterations """ pinv, _, _, info = ext_spgl1( self.Op if self.SOp is None else self.Op @ self.SOp.H, self.y, tau=self.tau, sigma=self.sigma, x0=x, **kwargs_spgl1, ) xinv = pinv.copy() if self.SOp is None else self.SOp.rmatvec(pinv) return xinv, pinv, info def solve( self, y: NDArray, x0: Optional[NDArray] = None, SOp: Optional[LinearOperator] = None, tau: float = 0.0, sigma: float = 0, show: bool = False, **kwargs_spgl1, ) -> Tuple[NDArray, NDArray, Dict[str, Any]]: r"""Run entire solver Parameters ---------- y : :obj:`np.ndarray` Data of size :math:`[N \times 1]` x0 : :obj:`numpy.ndarray`, optional Initial guess SOp : :obj:`pylops.LinearOperator`, optional Sparsifying transform tau : :obj:`float`, optional Non-negative LASSO scalar. If different from ``0``, SPGL1 will solve LASSO problem sigma : :obj:`list`, optional BPDN scalar. If different from ``0``, SPGL1 will solve BPDN problem show : :obj:`bool`, optional Display log **kwargs_spgl1 Arbitrary keyword arguments for :py:func:`spgl1.spgl1` solver Returns ------- xinv : :obj:`numpy.ndarray` Inverted model in original domain. pinv : :obj:`numpy.ndarray` Inverted model in sparse domain. info : :obj:`dict` Dictionary with the following information: - ``tau``, final value of tau (see sigma above) - ``rnorm``, two-norm of the optimal residual - ``rgap``, relative duality gap (an optimality measure) - ``gnorm``, Lagrange multiplier of (LASSO) - ``stat``, final status of solver * ``1``: found a BPDN solution, * ``2``: found a BP solution; exit based on small gradient, * ``3``: found a BP solution; exit based on small residual, * ``4``: found a LASSO solution, * ``5``: error, too many iterations, * ``6``: error, linesearch failed, * ``7``: error, found suboptimal BP solution, * ``8``: error, too many matrix-vector products. - ``niters``, number of iterations - ``nProdA``, number of multiplications with A - ``nProdAt``, number of multiplications with A' - ``n_newton``, number of Newton steps - ``time_project``, projection time (seconds) - ``time_matprod``, matrix-vector multiplications time (seconds) - ``time_total``, total solution time (seconds) - ``niters_lsqr``, number of lsqr iterations (if ``subspace_min=True``) - ``xnorm1``, L1-norm model solution history through iterations - ``rnorm2``, L2-norm residual history through iterations - ``lambdaa``, Lagrange multiplier history through iterations """ self.setup(y=y, SOp=SOp, tau=tau, sigma=sigma, show=show) xinv, pinv, info = self.run(x0, show=show, **kwargs_spgl1) self.finalize(show) return xinv, pinv, info
[docs]class SplitBregman(Solver): r"""Split Bregman for mixed L2-L1 norms. Solve an unconstrained system of equations with mixed :math:`L_2` and :math:`L_1` regularization terms given the operator ``Op``, a list of :math:`L_1` regularization terms ``RegsL1``, and an optional list of :math:`L_2` regularization terms ``RegsL2``. Parameters ---------- Op : :obj:`pylops.LinearOperator` Operator to invert Notes ----- Solve the following system of unconstrained, regularized equations given the operator :math:`\mathbf{Op}` and a set of mixed norm (:math:`L^2` and :math:`L_1`) regularization terms :math:`\mathbf{R}_{2,i}` and :math:`\mathbf{R}_{1,i}`, respectively: .. math:: J = \frac{\mu}{2} \|\textbf{y} - \textbf{Op}\,\textbf{x} \|_2^2 + \frac{1}{2}\sum_i \epsilon_{\mathbf{R}_{2,i}} \|\mathbf{y}_{\mathbf{R}_{2,i}} - \mathbf{R}_{2,i} \textbf{x} \|_2^2 + \sum_i \epsilon_{\mathbf{R}_{1,i}} \| \mathbf{R}_{1,i} \textbf{x} \|_1 where :math:`\mu` is the reconstruction damping, :math:`\epsilon_{\mathbf{R}_{2,i}}` are the damping factors used to weight the different :math:`L^2` regularization terms of the cost function and :math:`\epsilon_{\mathbf{R}_{1,i}}` are the damping factors used to weight the different :math:`L_1` regularization terms of the cost function. The generalized Split-Bergman algorithm [1]_ is used to solve such cost function: the algorithm is composed of a sequence of unconstrained inverse problems and Bregman updates. The original system of equations is initially converted into a constrained problem: .. math:: J = \frac{\mu}{2} \|\textbf{y} - \textbf{Op}\,\textbf{x}\|_2^2 + \frac{1}{2}\sum_i \epsilon_{\mathbf{R}_{2,i}} \|\mathbf{y}_{\mathbf{R}_{2,i}} - \mathbf{R}_{2,i} \textbf{x}\|_2^2 + \sum_i \| \textbf{y}_i \|_1 \quad \text{subject to} \quad \textbf{y}_i = \mathbf{R}_{1,i} \textbf{x} \quad \forall i and solved as follows: .. math:: \DeclareMathOperator*{\argmin}{arg\,min} \begin{align} (\textbf{x}^{k+1}, \textbf{y}_i^{k+1}) = \argmin_{\mathbf{x}, \mathbf{y}_i} \|\textbf{y} - \textbf{Op}\,\textbf{x}\|_2^2 &+ \frac{1}{2}\sum_i \epsilon_{\mathbf{R}_{2,i}} \|\mathbf{y}_{\mathbf{R}_{2,i}} - \mathbf{R}_{2,i} \textbf{x}\|_2^2 \\ &+ \frac{1}{2}\sum_i \epsilon_{\mathbf{R}_{1,i}} \|\textbf{y}_i - \mathbf{R}_{1,i} \textbf{x} - \textbf{b}_i^k\|_2^2 \\ &+ \sum_i \| \textbf{y}_i \|_1 \end{align} .. math:: \textbf{b}_i^{k+1}=\textbf{b}_i^k + (\mathbf{R}_{1,i} \textbf{x}^{k+1} - \textbf{y}^{k+1}) The :py:func:`scipy.sparse.linalg.lsqr` solver and a fast shrinkage algorithm are used within a inner loop to solve the first step. The entire procedure is repeated ``niter_outer`` times until convergence. .. [1] Goldstein T. and Osher S., "The Split Bregman Method for L1-Regularized Problems", SIAM J. on Scientific Computing, vol. 2(2), pp. 323-343. 2008. """ def _print_setup(self, xcomplex: bool = False) -> None: self._print_solver(nbar=65) strpar = ( f"niter_outer = {self.niter_outer:3d} niter_inner = {self.niter_inner:3d} tol = {self.tol:2.2e}\n" f"mu = {self.mu:2.2e} epsL1 = {self.epsRL1s}\t epsL2 = {self.epsRL2s}" ) print(strpar) print("-" * 65) if not xcomplex: head1 = " Itn x[0] r2norm r12norm" else: head1 = " Itn x[0] r2norm r12norm" print(head1) def _print_step(self, x: NDArray) -> None: strx = f"{x[0]:1.2e} " if np.iscomplexobj(x) else f"{x[0]:11.4e} " str1 = f"{self.iiter:6g} " + strx str2 = f"{self.costdata:10.3e} {self.costtot:9.3e}" print(str1 + str2) def setup( self, y: NDArray, RegsL1: List[LinearOperator], x0: Optional[NDArray] = None, niter_outer: int = 3, niter_inner: int = 5, RegsL2: Optional[List[LinearOperator]] = None, dataregsL2: Optional[Sequence[NDArray]] = None, mu: float = 1.0, epsRL1s: Optional[SamplingLike] = None, epsRL2s: Optional[SamplingLike] = None, tol: float = 1e-10, tau: float = 1.0, restart: bool = False, show: bool = False, ) -> NDArray: r"""Setup solver Parameters ---------- y : :obj:`np.ndarray` Data of size :math:`[N \times 1]` RegsL1 : :obj:`list` :math:`L_1` regularization operators x0 : :obj:`np.ndarray`, optional Initial guess of size :math:`[M \times 1]`. If ``None``, initialize internally as zero vector niter_outer : :obj:`int`, optional Number of iterations of outer loop niter_inner : :obj:`int`, optional Number of iterations of inner loop of first step of the Split Bregman algorithm. A small number of iterations is generally sufficient and for many applications optimal efficiency is obtained when only one iteration is performed. RegsL2 : :obj:`list`, optional Additional :math:`L^2` regularization operators (if ``None``, :math:`L^2` regularization is not added to the problem) dataregsL2 : :obj:`list`, optional :math:`L^2` Regularization data (must have the same number of elements of ``RegsL2`` or equal to ``None`` to use a zero data for every regularization operator in ``RegsL2``) mu : :obj:`float`, optional Data term damping epsRL1s : :obj:`list` :math:`L_1` Regularization dampings (must have the same number of elements as ``RegsL1``) epsRL2s : :obj:`list` :math:`L^2` Regularization dampings (must have the same number of elements as ``RegsL2``) tol : :obj:`float`, optional Tolerance. Stop outer iterations if difference between inverted model at subsequent iterations is smaller than ``tol`` tau : :obj:`float`, optional Scaling factor in the Bregman update (must be close to 1) restart : :obj:`bool`, optional Initialize the unconstrained inverse problem in inner loop with the initial guess (``True``) or with the last estimate (``False``). Note that when this is set to ``True``, the ``x0`` provided in the setup will be used in all iterations. show : :obj:`bool`, optional Display setup log Returns ------- x : :obj:`np.ndarray` Initial guess of size :math:`[N \times 1]` """ self.y = y self.RegsL1 = RegsL1 self.niter_outer = niter_outer self.niter_inner = niter_inner self.RegsL2 = RegsL2 self.dataregsL2 = list(dataregsL2) if dataregsL2 is not None else [] self.mu = mu self.epsRL1s = list(epsRL1s) if epsRL1s is not None else [] self.epsRL2s = list(epsRL2s) if epsRL2s is not None else [] self.tol = tol self.tau = tau self.restart = restart self.ncp = get_array_module(y) # L1 regularizations self.nregsL1 = len(RegsL1) self.b = [ self.ncp.zeros(RegL1.shape[0], dtype=self.Op.dtype) for RegL1 in RegsL1 ] self.d = self.b.copy() # L2 regularizations self.nregsL2 = 0 if RegsL2 is None else len(RegsL2) if self.nregsL2 > 0 and RegsL2 is not None: self.Regs = RegsL2 + RegsL1 if dataregsL2 is None: self.dataregsL2 = [ self.ncp.zeros(Reg.shape[0], dtype=self.Op.dtype) for Reg in RegsL2 ] else: self.Regs = RegsL1 self.dataregsL2 = [] # Rescale dampings self.epsRs: List[float] = [] if epsRL2s is not None: self.epsRs += [ np.sqrt(epsRL2s[ireg] / 2) / np.sqrt(mu / 2) for ireg in range(self.nregsL2) ] if epsRL1s is not None: self.epsRs += [ np.sqrt(epsRL1s[ireg] / 2) / np.sqrt(mu / 2) for ireg in range(self.nregsL1) ] self.x0 = x0 x = self.ncp.zeros(self.Op.shape[1], dtype=self.Op.dtype) if x0 is None else x0 # create variables to track the residual norm and iterations self.cost: List[float] = [] self.iiter = 0 if show: self._print_setup(np.iscomplexobj(x)) return x def step( self, x: NDArray, show: bool = False, show_inner: bool = False, **kwargs_lsqr, ) -> NDArray: r"""Run one step of solver Parameters ---------- x : :obj:`list` or :obj:`np.ndarray` Current model vector to be updated by a step of OMP show_inner : :obj:`bool`, optional Display inner iteration logs of lsqr show : :obj:`bool`, optional Display iteration log **kwargs_lsqr Arbitrary keyword arguments for :py:func:`scipy.sparse.linalg.lsqr` solver used to solve the first subproblem in the first step of the Split Bregman algorithm. Returns ------- x : :obj:`np.ndarray` Updated model vector """ for _ in range(self.niter_inner): # regularized problem dataregs = self.dataregsL2 + [ self.d[ireg] - self.b[ireg] for ireg in range(self.nregsL1) ] x = regularized_inversion( self.Op, self.y, self.Regs, dataregs=dataregs, epsRs=self.epsRs, x0=self.x0 if self.restart else x, show=show_inner, **kwargs_lsqr, )[0] # Shrinkage self.d = [ _softthreshold( self.RegsL1[ireg].matvec(x) + self.b[ireg], self.epsRL1s[ireg] ) for ireg in range(self.nregsL1) ] # Bregman update self.b = [ self.b[ireg] + self.tau * (self.RegsL1[ireg].matvec(x) - self.d[ireg]) for ireg in range(self.nregsL1) ] # compute residual norms self.costdata = ( self.mu / 2.0 * self.ncp.linalg.norm(self.y - self.Op.matvec(x)) ** 2 ) self.costregL2 = ( 0 if self.RegsL2 is None else [ epsRL2 * self.ncp.linalg.norm(dataregL2 - RegL2.matvec(x)) ** 2 for epsRL2, RegL2, dataregL2 in zip( self.epsRL2s, self.RegsL2, self.dataregsL2 ) ] ) self.costregL1 = [ self.ncp.linalg.norm(RegL1.matvec(x), ord=1) for epsRL1, RegL1 in zip(self.epsRL1s, self.RegsL1) ] self.costtot = ( self.costdata + self.ncp.sum(self.ncp.array(self.costregL2)) + self.ncp.sum(self.ncp.array(self.costregL1)) ) # update history parameters self.iiter += 1 self.cost.append(float(self.costtot)) if show: self._print_step(x) return x def run( self, x: NDArray, show: bool = False, itershow: Tuple[int, int, int] = (10, 10, 10), show_inner: bool = False, **kwargs_lsqr, ) -> NDArray: r"""Run solver Parameters ---------- x : :obj:`np.ndarray` Current model vector to be updated by multiple steps of IRLS show : :obj:`bool`, optional Display logs itershow : :obj:`tuple`, optional Display set log for the first N1 steps, last N2 steps, and every N3 steps in between where N1, N2, N3 are the three element of the list. show_inner : :obj:`bool`, optional Display inner iteration logs of lsqr **kwargs_lsqr Arbitrary keyword arguments for :py:func:`scipy.sparse.linalg.lsqr` solver used to solve the first subproblem in the first step of the Split Bregman algorithm. Returns ------- x : :obj:`np.ndarray` Estimated model of size :math:`[M \times 1]` """ xold = x.copy() + 1.1 * self.tol while ( self.ncp.linalg.norm(x - xold) > self.tol and self.iiter < self.niter_outer ): xold = x.copy() showstep = ( True if show and ( self.iiter < itershow[0] or self.niter_outer - self.iiter < itershow[1] or self.iiter % itershow[2] == 0 ) else False ) x = self.step(x, showstep, show_inner, **kwargs_lsqr) self.callback(x) return x def finalize(self, show: bool = False) -> NDArray: r"""Finalize solver Parameters ---------- show : :obj:`bool`, optional Display finalize log Returns ------- xfin : :obj:`np.ndarray` Estimated model of size :math:`[M \times 1]` """ self.tend = time.time() self.telapsed = self.tend - self.tstart self.cost = np.array(self.cost) if show: self._print_finalize(nbar=65) def solve( self, y: NDArray, RegsL1: List[LinearOperator], x0: Optional[NDArray] = None, niter_outer: int = 3, niter_inner: int = 5, RegsL2: Optional[List[LinearOperator]] = None, dataregsL2: Optional[List[NDArray]] = None, mu: float = 1.0, epsRL1s: Optional[SamplingLike] = None, epsRL2s: Optional[SamplingLike] = None, tol: float = 1e-10, tau: float = 1.0, restart: bool = False, show: bool = False, itershow: Tuple[int, int, int] = (10, 10, 10), show_inner: bool = False, **kwargs_lsqr, ) -> Tuple[NDArray, int, NDArray]: r"""Run entire solver Parameters ---------- y : :obj:`np.ndarray` Data of size :math:`[N \times 1]` RegsL1 : :obj:`list` :math:`L_1` regularization operators x0 : :obj:`np.ndarray`, optional Initial guess of size :math:`[M \times 1]`. If ``None``, initialize internally as zero vector niter_outer : :obj:`int`, optional Number of iterations of outer loop niter_inner : :obj:`int`, optional Number of iterations of inner loop of first step of the Split Bregman algorithm. A small number of iterations is generally sufficient and for many applications optimal efficiency is obtained when only one iteration is performed. RegsL2 : :obj:`list`, optional Additional :math:`L^2` regularization operators (if ``None``, :math:`L^2` regularization is not added to the problem) dataregsL2 : :obj:`list`, optional :math:`L^2` Regularization data (must have the same number of elements of ``RegsL2`` or equal to ``None`` to use a zero data for every regularization operator in ``RegsL2``) mu : :obj:`float`, optional Data term damping epsRL1s : :obj:`list` :math:`L_1` Regularization dampings (must have the same number of elements as ``RegsL1``) epsRL2s : :obj:`list` :math:`L^2` Regularization dampings (must have the same number of elements as ``RegsL2``) tol : :obj:`float`, optional Tolerance. Stop outer iterations if difference between inverted model at subsequent iterations is smaller than ``tol`` tau : :obj:`float`, optional Scaling factor in the Bregman update (must be close to 1) restart : :obj:`bool`, optional Initialize the unconstrained inverse problem in inner loop with the initial guess (``True``) or with the last estimate (``False``). Note that when this is set to ``True``, the ``x0`` provided in the setup will be used in all iterations. show : :obj:`bool`, optional Display logs itershow : :obj:`tuple`, optional Display set log for the first N1 steps, last N2 steps, and every N3 steps in between where N1, N2, N3 are the three element of the list. show_inner : :obj:`bool`, optional Display inner iteration logs of lsqr **kwargs_lsqr Arbitrary keyword arguments for :py:func:`scipy.sparse.linalg.lsqr` solver used to solve the first subproblem in the first step of the Split Bregman algorithm. Returns ------- x : :obj:`np.ndarray` Estimated model of size :math:`[M \times 1]` iiter : :obj:`int` Iteration number of outer loop upon termination cost : :obj:`numpy.ndarray` History of cost function through iterations """ x = self.setup( y, RegsL1, x0=x0, niter_outer=niter_outer, niter_inner=niter_inner, RegsL2=RegsL2, dataregsL2=dataregsL2, mu=mu, epsRL1s=epsRL1s, epsRL2s=epsRL2s, tol=tol, tau=tau, restart=restart, show=show, ) x = self.run( x, show=show, itershow=itershow, show_inner=show_inner, **kwargs_lsqr ) self.finalize(show) return x, self.iiter, self.cost