Source code for pylops.optimization.sparsity

__all__ = [
    "irls",
    "omp",
    "ista",
    "fista",
    "spgl1",
    "splitbregman",
]

from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple

from pylops.optimization.cls_sparsity import FISTA, IRLS, ISTA, OMP, SPGL1, SplitBregman
from pylops.utils.decorators import add_ndarray_support_to_solver
from pylops.utils.typing import NDArray, SamplingLike

if TYPE_CHECKING:
    from pylops.linearoperator import LinearOperator


[docs]def irls( Op: "LinearOperator", y: NDArray, x0: Optional[NDArray] = None, nouter: int = 10, threshR: bool = False, epsR: float = 1e-10, epsI: float = 1e-10, tolIRLS: float = 1e-10, warm: bool = False, kind: str = "data", show: bool = False, itershow: Tuple[int, int, int] = (10, 10, 10), callback: Optional[Callable] = None, **kwargs_solver, ) -> Tuple[NDArray, int]: r"""Iteratively reweighted least squares. Solve an optimization problem with :math:`L_1` cost function (data IRLS) or :math:`L_1` regularization term (model IRLS) given the operator ``Op`` and data ``y``. In the *data IRLS*, the cost function is minimized by iteratively solving a weighted least squares problem with the weight at iteration :math:`i` being based on the data residual at iteration :math:`i-1`. This IRLS solver is robust to *outliers* since the L1 norm given less weight to large residuals than L2 norm does. Similarly in the *model IRLS*, the weight at at iteration :math:`i` is based on the model at iteration :math:`i-1`. This IRLS solver inverts for a sparse model vector. Parameters ---------- Op : :obj:`pylops.LinearOperator` Operator to invert y : :obj:`numpy.ndarray` Data x0 : :obj:`numpy.ndarray`, optional Initial guess nouter : :obj:`int`, optional Number of outer iterations threshR : :obj:`bool`, optional Apply thresholding in creation of weight (``True``) or damping (``False``) epsR : :obj:`float`, optional Damping to be applied to residuals for weighting term epsI : :obj:`float`, optional Tikhonov damping tolIRLS : :obj:`float`, optional Tolerance. Stop outer iterations if difference between inverted model at subsequent iterations is smaller than ``tolIRLS`` warm : :obj:`bool`, optional Warm start each inversion inner step with previous estimate (``True``) or not (``False``). This only applies to ``kind="data"`` and ``kind="datamodel"`` kind : :obj:`str`, optional Kind of solver (``model``, ``data`` or ``datamodel``) show : :obj:`bool`, optional Display logs itershow : :obj:`tuple`, optional Display set log for the first N1 steps, last N2 steps, and every N3 steps in between where N1, N2, N3 are the three element of the list. callback : :obj:`callable`, optional Function with signature (``callback(x)``) to call after each iteration where ``x`` is the current model vector **kwargs_solver Arbitrary keyword arguments for :py:func:`scipy.sparse.linalg.cg` solver for data IRLS and :py:func:`scipy.sparse.linalg.lsqr` solver for model IRLS when using numpy data(or :py:func:`pylops.optimization.solver.cg` and :py:func:`pylops.optimization.solver.cgls` when using cupy data) Returns ------- xinv : :obj:`numpy.ndarray` Inverted model nouter : :obj:`int` Number of effective outer iterations Notes ----- See :class:`pylops.optimization.cls_sparsity.IRLS` """ irlssolve = IRLS(Op) if callback is not None: irlssolve.callback = callback x, nouter, = irlssolve.solve( y, x0=x0, nouter=nouter, threshR=threshR, epsR=epsR, epsI=epsI, tolIRLS=tolIRLS, warm=warm, kind=kind, show=show, itershow=itershow, **kwargs_solver, ) return x, nouter
[docs]def omp( Op: "LinearOperator", y: NDArray, niter_outer: int = 10, niter_inner: int = 40, sigma: float = 1e-4, normalizecols: bool = False, show: bool = False, itershow: Tuple[int, int, int] = (10, 10, 10), callback: Optional[Callable] = None, ) -> Tuple[NDArray, int, NDArray]: r"""Orthogonal Matching Pursuit (OMP). Solve an optimization problem with :math:`L^0` regularization function given the operator ``Op`` and data ``y``. The operator can be real or complex, and should ideally be either square :math:`N=M` or underdetermined :math:`N<M`. Parameters ---------- Op : :obj:`pylops.LinearOperator` Operator to invert y : :obj:`numpy.ndarray` Data niter_outer : :obj:`int`, optional Number of iterations of outer loop niter_inner : :obj:`int`, optional Number of iterations of inner loop. By choosing ``niter_inner=0``, the Matching Pursuit (MP) algorithm is implemented. sigma : :obj:`list` Maximum :math:`L_2` norm of residual. When smaller stop iterations. normalizecols : :obj:`list`, optional Normalize columns (``True``) or not (``False``). Note that this can be expensive as it requires applying the forward operator :math:`n_{cols}` times to unit vectors (i.e., containing 1 at position j and zero otherwise); use only when the columns of the operator are expected to have highly varying norms. show : :obj:`bool`, optional Display iterations log itershow : :obj:`tuple`, optional Display set log for the first N1 steps, last N2 steps, and every N3 steps in between where N1, N2, N3 are the three element of the list. callback : :obj:`callable`, optional Function with signature (``callback(x)``) to call after each iteration where ``x`` is the current model vector Returns ------- xinv : :obj:`numpy.ndarray` Inverted model niter_outer : :obj:`int` Number of effective outer iterations cost : :obj:`numpy.ndarray` History of cost function See Also -------- ISTA: Iterative Shrinkage-Thresholding Algorithm (ISTA). FISTA: Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). SPGL1: Spectral Projected-Gradient for L1 norm (SPGL1). SplitBregman: Split Bregman for mixed L2-L1 norms. Notes ----- See :class:`pylops.optimization.cls_sparsity.OMP` """ ompsolve = OMP(Op) if callback is not None: ompsolve.callback = callback x, niter_outer, cost = ompsolve.solve( y, niter_outer=niter_outer, niter_inner=niter_inner, sigma=sigma, normalizecols=normalizecols, show=show, itershow=itershow, ) return x, niter_outer, cost
[docs]def ista( Op: "LinearOperator", y: NDArray, x0: Optional[NDArray] = None, niter: int = 10, SOp: Optional["LinearOperator"] = None, eps: float = 0.1, alpha: Optional[float] = None, eigsdict: Optional[Dict[str, Any]] = None, tol: float = 1e-10, threshkind: str = "soft", perc: Optional[float] = None, decay: Optional[NDArray] = None, monitorres: bool = False, show: bool = False, itershow: Tuple[int, int, int] = (10, 10, 10), callback: Optional[Callable] = None, ) -> Tuple[NDArray, int, NDArray]: r"""Iterative Shrinkage-Thresholding Algorithm (ISTA). Solve an optimization problem with :math:`L^p, \; p=0, 0.5, 1` regularization, given the operator ``Op`` and data ``y``. The operator can be real or complex, and should ideally be either square :math:`N=M` or underdetermined :math:`N<M`. Parameters ---------- Op : :obj:`pylops.LinearOperator` Operator to invert y : :obj:`numpy.ndarray` Data of size :math:`[N \times 1]` x0: :obj:`numpy.ndarray`, optional Initial guess niter : :obj:`int` Number of iterations SOp : :obj:`pylops.LinearOperator`, optional Regularization operator (use when solving the analysis problem) eps : :obj:`float`, optional Sparsity damping alpha : :obj:`float`, optional Step size. To guarantee convergence, ensure :math:`\alpha \le 1/\lambda_\text{max}`, where :math:`\lambda_\text{max}` is the largest eigenvalue of :math:`\mathbf{Op}^H\mathbf{Op}`. If ``None``, the maximum eigenvalue is estimated and the optimal step size is chosen as :math:`1/\lambda_\text{max}`. If provided, the convergence criterion will not be checked internally. eigsdict : :obj:`dict`, optional Dictionary of parameters to be passed to :func:`pylops.LinearOperator.eigs` method when computing the maximum eigenvalue tol : :obj:`float`, optional Tolerance. Stop iterations if difference between inverted model at subsequent iterations is smaller than ``tol`` threshkind : :obj:`str`, optional Kind of thresholding ('hard', 'soft', 'half', 'hard-percentile', 'soft-percentile', or 'half-percentile' - 'soft' used as default) perc : :obj:`float`, optional Percentile, as percentage of values to be kept by thresholding (to be provided when thresholding is soft-percentile or half-percentile) decay : :obj:`numpy.ndarray`, optional Decay factor to be applied to thresholding during iterations monitorres : :obj:`bool`, optional Monitor that residual is decreasing show : :obj:`bool`, optional Display logs itershow : :obj:`tuple`, optional Display set log for the first N1 steps, last N2 steps, and every N3 steps in between where N1, N2, N3 are the three element of the list. callback : :obj:`callable`, optional Function with signature (``callback(x)``) to call after each iteration where ``x`` is the current model vector Returns ------- xinv : :obj:`numpy.ndarray` Inverted model niter : :obj:`int` Number of effective iterations cost : :obj:`numpy.ndarray` History of cost function Raises ------ NotImplementedError If ``threshkind`` is different from hard, soft, half, soft-percentile, or half-percentile ValueError If ``perc=None`` when ``threshkind`` is soft-percentile or half-percentile ValueError If ``monitorres=True`` and residual increases See Also -------- OMP: Orthogonal Matching Pursuit (OMP). FISTA: Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). SPGL1: Spectral Projected-Gradient for L1 norm (SPGL1). SplitBregman: Split Bregman for mixed L2-L1 norms. Notes ----- See :class:`pylops.optimization.cls_sparsity.ISTA` """ istasolve = ISTA(Op) if callback is not None: istasolve.callback = callback x, iiter, cost = istasolve.solve( y=y, x0=x0, niter=niter, SOp=SOp, eps=eps, alpha=alpha, eigsdict=eigsdict, tol=tol, threshkind=threshkind, perc=perc, decay=decay, monitorres=monitorres, show=show, itershow=itershow, ) return x, iiter, cost
[docs]def fista( Op: "LinearOperator", y: NDArray, x0: Optional[NDArray] = None, niter: int = 10, SOp: Optional["LinearOperator"] = None, eps: float = 0.1, alpha: Optional[float] = None, eigsdict: Optional[Dict[str, Any]] = None, tol: float = 1e-10, threshkind: str = "soft", perc: Optional[float] = None, decay: Optional[NDArray] = None, monitorres: bool = False, show: bool = False, itershow: Tuple[int, int, int] = (10, 10, 10), callback: Optional[Callable] = None, ) -> Tuple[NDArray, int, NDArray]: r"""Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). Solve an optimization problem with :math:`L^p, \; p=0, 0.5, 1` regularization, given the operator ``Op`` and data ``y``. The operator can be real or complex, and should ideally be either square :math:`N=M` or underdetermined :math:`N<M`. Parameters ---------- Op : :obj:`pylops.LinearOperator` Operator to invert y : :obj:`numpy.ndarray` Data x0: :obj:`numpy.ndarray`, optional Initial guess niter : :obj:`int`, optional Number of iterations SOp : :obj:`pylops.LinearOperator`, optional Regularization operator (use when solving the analysis problem) eps : :obj:`float`, optional Sparsity damping alpha : :obj:`float`, optional Step size. To guarantee convergence, ensure :math:`\alpha \le 1/\lambda_\text{max}`, where :math:`\lambda_\text{max}` is the largest eigenvalue of :math:`\mathbf{Op}^H\mathbf{Op}`. If ``None``, the maximum eigenvalue is estimated and the optimal step size is chosen as :math:`1/\lambda_\text{max}`. If provided, the convergence criterion will not be checked internally. eigsdict : :obj:`dict`, optional Dictionary of parameters to be passed to :func:`pylops.LinearOperator.eigs` method when computing the maximum eigenvalue tol : :obj:`float`, optional Tolerance. Stop iterations if difference between inverted model at subsequent iterations is smaller than ``tol`` threshkind : :obj:`str`, optional Kind of thresholding ('hard', 'soft', 'half', 'soft-percentile', or 'half-percentile' - 'soft' used as default) perc : :obj:`float`, optional Percentile, as percentage of values to be kept by thresholding (to be provided when thresholding is soft-percentile or half-percentile) decay : :obj:`numpy.ndarray`, optional Decay factor to be applied to thresholding during iterations monitorres : :obj:`bool`, optional Monitor that residual is decreasing show : :obj:`bool`, optional Display iterations log itershow : :obj:`tuple`, optional Display set log for the first N1 steps, last N2 steps, and every N3 steps in between where N1, N2, N3 are the three element of the list. callback : :obj:`callable`, optional Function with signature (``callback(x)``) to call after each iteration where ``x`` is the current model vector Returns ------- xinv : :obj:`numpy.ndarray` Inverted model niter : :obj:`int` Number of effective iterations cost : :obj:`numpy.ndarray`, optional History of cost function Raises ------ NotImplementedError If ``threshkind`` is different from hard, soft, half, soft-percentile, or half-percentile ValueError If ``perc=None`` when ``threshkind`` is soft-percentile or half-percentile See Also -------- OMP: Orthogonal Matching Pursuit (OMP). ISTA: Iterative Shrinkage-Thresholding Algorithm (ISTA). SPGL1: Spectral Projected-Gradient for L1 norm (SPGL1). SplitBregman: Split Bregman for mixed L2-L1 norms. Notes ----- See :class:`pylops.optimization.cls_sparsity.FISTA` """ fistasolve = FISTA(Op) if callback is not None: fistasolve.callback = callback x, iiter, cost = fistasolve.solve( y=y, x0=x0, niter=niter, SOp=SOp, eps=eps, alpha=alpha, eigsdict=eigsdict, tol=tol, threshkind=threshkind, perc=perc, decay=decay, monitorres=monitorres, show=show, itershow=itershow, ) return x, iiter, cost
[docs]@add_ndarray_support_to_solver def spgl1( Op: "LinearOperator", y: NDArray, x0: Optional[NDArray] = None, SOp: Optional["LinearOperator"] = None, tau: float = 0.0, sigma: float = 0.0, show: bool = False, **kwargs_spgl1, ) -> Tuple[NDArray, NDArray, Dict[str, Any]]: r"""Spectral Projected-Gradient for L1 norm. Solve a constrained system of equations given the operator ``Op`` and a sparsyfing transform ``SOp`` aiming to retrive a model that is sparse in the sparsyfing domain. This is a simple wrapper to :py:func:`spgl1.spgl1` which is a porting of the well-known `SPGL1 <https://www.cs.ubc.ca/~mpf/spgl1/>`_ MATLAB solver into Python. In order to be able to use this solver you need to have installed the ``spgl1`` library. Parameters ---------- Op : :obj:`pylops.LinearOperator` Operator to invert y : :obj:`numpy.ndarray` Data x0 : :obj:`numpy.ndarray`, optional Initial guess SOp : :obj:`pylops.LinearOperator`, optional Sparsifying transform tau : :obj:`float`, optional Non-negative LASSO scalar. If different from ``0``, SPGL1 will solve LASSO problem sigma : :obj:`list`, optional BPDN scalar. If different from ``0``, SPGL1 will solve BPDN problem show : :obj:`bool`, optional Display iterations log **kwargs_spgl1 Arbitrary keyword arguments for :py:func:`spgl1.spgl1` solver Returns ------- xinv : :obj:`numpy.ndarray` Inverted model in original domain. pinv : :obj:`numpy.ndarray` Inverted model in sparse domain. info : :obj:`dict` Dictionary with the following information: - ``tau``, final value of tau (see sigma above) - ``rnorm``, two-norm of the optimal residual - ``rgap``, relative duality gap (an optimality measure) - ``gnorm``, Lagrange multiplier of (LASSO) - ``stat``, final status of solver * ``1``: found a BPDN solution, * ``2``: found a BP solution; exit based on small gradient, * ``3``: found a BP solution; exit based on small residual, * ``4``: found a LASSO solution, * ``5``: error, too many iterations, * ``6``: error, linesearch failed, * ``7``: error, found suboptimal BP solution, * ``8``: error, too many matrix-vector products. - ``niters``, number of iterations - ``nProdA``, number of multiplications with A - ``nProdAt``, number of multiplications with A' - ``n_newton``, number of Newton steps - ``time_project``, projection time (seconds) - ``time_matprod``, matrix-vector multiplications time (seconds) - ``time_total``, total solution time (seconds) - ``niters_lsqr``, number of lsqr iterations (if ``subspace_min=True``) - ``xnorm1``, L1-norm model solution history through iterations - ``rnorm2``, L2-norm residual history through iterations - ``lambdaa``, Lagrange multiplier history through iterations Raises ------ ModuleNotFoundError If the ``spgl1`` library is not installed Notes ----- See :class:`pylops.optimization.cls_sparsity.SPGL1` """ spgl1solve = SPGL1(Op) xinv, pinv, info = spgl1solve.solve( y, x0=x0, SOp=SOp, tau=tau, sigma=sigma, show=show, **kwargs_spgl1, ) return xinv, pinv, info
[docs]def splitbregman( Op: "LinearOperator", y: NDArray, RegsL1: List["LinearOperator"], x0: Optional[NDArray] = None, niter_outer: int = 3, niter_inner: int = 5, RegsL2: Optional[List["LinearOperator"]] = None, dataregsL2: Optional[List[NDArray]] = None, mu: float = 1.0, epsRL1s: Optional[SamplingLike] = None, epsRL2s: Optional[SamplingLike] = None, tol: float = 1e-10, tau: float = 1.0, restart: bool = False, show: bool = False, itershow: Tuple[int, int, int] = (10, 10, 10), show_inner: bool = False, callback: Optional[Callable] = None, **kwargs_lsqr, ) -> Tuple[NDArray, int, NDArray]: r"""Split Bregman for mixed L2-L1 norms. Solve an unconstrained system of equations with mixed :math:`L_2` and :math:`L_1` regularization terms given the operator ``Op``, a list of :math:`L_1` regularization terms ``RegsL1``, and an optional list of :math:`L_2` regularization terms ``RegsL2``. Parameters ---------- Op : :obj:`pylops.LinearOperator` Operator to invert y : :obj:`numpy.ndarray` Data RegsL1 : :obj:`list` :math:`L_1` regularization operators x0 : :obj:`numpy.ndarray`, optional Initial guess niter_outer : :obj:`int` Number of iterations of outer loop niter_inner : :obj:`int` Number of iterations of inner loop of first step of the Split Bregman algorithm. A small number of iterations is generally sufficient and for many applications optimal efficiency is obtained when only one iteration is performed. RegsL2 : :obj:`list` Additional :math:`L_2` regularization operators (if ``None``, :math:`L_2` regularization is not added to the problem) dataregsL2 : :obj:`list`, optional :math:`L_2` Regularization data (must have the same number of elements of ``RegsL2`` or equal to ``None`` to use a zero data for every regularization operator in ``RegsL2``) mu : :obj:`float`, optional Data term damping epsRL1s : :obj:`list` :math:`L_1` Regularization dampings (must have the same number of elements as ``RegsL1``) epsRL2s : :obj:`list` :math:`L_2` Regularization dampings (must have the same number of elements as ``RegsL2``) tol : :obj:`float`, optional Tolerance. Stop outer iterations if difference between inverted model at subsequent iterations is smaller than ``tol`` tau : :obj:`float`, optional Scaling factor in the Bregman update (must be close to 1) restart : :obj:`bool`, optional The unconstrained inverse problem in inner loop is initialized with the initial guess (``True``) or with the last estimate (``False``) show : :obj:`bool`, optional Display iterations log itershow : :obj:`tuple`, optional Display set log for the first N1 steps, last N2 steps, and every N3 steps in between where N1, N2, N3 are the three element of the list. show_inner : :obj:`bool`, optional Display inner iteration logs of lsqr callback : :obj:`callable`, optional Function with signature (``callback(x)``) to call after each iteration where ``x`` is the current model vector **kwargs_lsqr Arbitrary keyword arguments for :py:func:`scipy.sparse.linalg.lsqr` solver used to solve the first subproblem in the first step of the Split Bregman algorithm. Returns ------- xinv : :obj:`numpy.ndarray` Inverted model itn_out : :obj:`int` Iteration number of outer loop upon termination cost : :obj:`numpy.ndarray`, optional History of cost function through iterations Notes ----- See :class:`pylops.optimization.cls_sparsity.SplitBregman` """ sbsolve = SplitBregman(Op) if callback is not None: sbsolve.callback = callback xinv, itn_out, cost = sbsolve.solve( y, RegsL1, x0=x0, niter_outer=niter_outer, niter_inner=niter_inner, RegsL2=RegsL2, dataregsL2=dataregsL2, mu=mu, epsRL1s=epsRL1s, epsRL2s=epsRL2s, tol=tol, tau=tau, restart=restart, show=show, itershow=itershow, show_inner=show_inner, **kwargs_lsqr, ) return xinv, itn_out, cost